Wissenschaftliche Werke

Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100

Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.

Grigoropoulou, A., S. A. Hamid, R. Acosta, E. O. Akindele, S. A. Al‐Shami, F. Altermatt, G. Amatulli, et al. 2023. The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13648

Motivation Aquatic insects comprise 64% of freshwater animal diversity and are widely used as bioindicators to assess water quality impairment and freshwater ecosystem health, as well as to test ecological hypotheses. Despite their importance, a comprehensive, global database of aquatic insect occurrences for mapping freshwater biodiversity in macroecological studies and applied freshwater research is missing. We aim to fill this gap and present the Global EPTO Database, which includes worldwide geo-referenced aquatic insect occurrence records for four major taxa groups: Ephemeroptera, Plecoptera, Trichoptera and Odonata (EPTO). Main type of variables contained A total of 8,368,467 occurrence records globally, of which 8,319,689 (99%) are publicly available. The records are attributed to the corresponding drainage basin and sub-catchment based on the Hydrography90m dataset and are accompanied by the elevation value, the freshwater ecoregion and the protection status of their location. Spatial location and grain The database covers the global extent, with 86% of the observation records having coordinates with at least four decimal digits (11.1 m precision at the equator) in the World Geodetic System 1984 (WGS84) coordinate reference system. Time period and grain Sampling years span from 1951 to 2021. Ninety-nine percent of the records have information on the year of the observation, 95% on the year and month, while 94% have a complete date. In the case of seven sub-datasets, exact dates can be retrieved upon communication with the data contributors. Major taxa and level of measurement Ephemeroptera, Plecoptera, Trichoptera and Odonata, standardized at the genus taxonomic level. We provide species names for 7,727,980 (93%) records without further taxonomic verification. Software format The entire tab-separated value (.csv) database can be downloaded and visualized at https://glowabio.org/project/epto_database/. Fifty individual datasets are also available at https://fred.igb-berlin.de, while six datasets have restricted access. For the latter, we share metadata and the contact details of the authors.

Higino, G. T., F. Banville, G. Dansereau, N. R. Forero Muñoz, F. Windsor, and T. Poisot. 2023. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 11: e14620. https://doi.org/10.7717/peerj.14620

Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600. https://doi.org/10.3390/su15010600

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.

Rodríguez-Rey, M., and G. Grenouillet. 2022. Disentangling the Drivers of the Sampling Bias of Freshwater Fish across Europe. Fishes 7: 383. https://doi.org/10.3390/fishes7060383

The Wallacean shortfall refers to the knowledge gap in biodiversity distributions. There is still limited knowledge for freshwater fish species despite the importance of focusing conservation efforts towards this group due to their alarming extinction risk and the increasing human pressure on freshwater ecosystems. Here, we addressed the Wallacean shortfall for freshwater fish faunas across Europe by using the completeness indicator derived from species accumulation curves to quantify the fish sampling efforts. The multiple potential drivers of completeness that were previously related to the sampling efforts for other species (i.e., population density, nature reserves, or distance to cities) were tested using a 10 × 10 km2 grid resolution, as well as environmental (e.g., climatic) factors. Our results suggested that although there was an overall spatial pattern at the European level, the completeness was highly country-dependent. Accessibility parameters explained the sampling efforts, as for other taxa. Likewise, climate factors were related to survey completeness, possibly pointing to the river conditions required for fish sampling. The survey effort map we provide can be used to optimize future sampling, aiming at filling the data gaps in undersampled regions like the eastern European countries, as well as to account for the current bias in any ecological modeling using such data, with important implications for conservation and management.

Ecke, F., B. A. Han, B. Hörnfeldt, H. Khalil, M. Magnusson, N. J. Singh, and R. S. Ostfeld. 2022. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications 13. https://doi.org/10.1038/s41467-022-35273-7

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world. Many rodent species are known as hosts of zoonotic pathogens, but the ecological conditions that trigger spillover are not well-understood. Here, the authors show that population fluctuations and association with human-dominated habitats explain the zoonotic reservoir status of rodents globally.

D’Apolito, C., B. Tacoronte Gomes, F. P. R. Leite, and S. A. Ferreira Da Silva-Caminha. 2022. Fossil Parkia R.Br. (Fabaceae) pollen from the Miocene of western Amazonia. Grana: 1–20. https://doi.org/10.1080/00173134.2022.2130009

The legume genus Parkia R.Br. has a pantropical distribution and centre of diversity in the Amazon. The molecular phylogeny of the group indicates a Neotropical origin in the Amazon biome during the Miocene, and habitat reconstruction points to terra firme (unflooded) forests. We examined recently described fossil pollen from the Miocene Solimões Formation in western Brazilian Amazonia attributed to this genus. Aiming to establish an infra-generic affinity, comparisons were performed between fossil pollen of Parkiidites marileae Leite and pollen from extant Parkia species using morphological characters and multivariate analyses. Parkiidites marileae is characterised by large and globose polyads, the polyads are composed of 16 monads, and the monads have a verrucate ornamentation. Analyses suggest two well-defined groups, a non-NLR (nearest living relative) group composed of P. decussata, P. gigantocarpa, P. velutina, P. panurensis, P. platycephala, P. pendula, P. multijuga, and P. ulei; and a NLR group composed of P. cachimboensis, P. discolor, P. igneiflora, P. lutea, and P. nitida. All species of the NLR group belong to the same clade, with a molecular age estimated at ∼12.8 million years, which is virtually the same age as interpreted for the first occurrence of P. marileae in the Solimões Formation. The late Middle to Late Miocene in western Amazonia was a time of gradual change from vast wetlands to more river-dominated landscapes that favoured unflooded forests where Parkia diversified and is distributed today.

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.

Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538. https://doi.org/10.1016/j.isci.2022.105538

Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.