Wissenschaft ermöglicht durch Exemplardaten

Milla, R., Bastida, J. M., Turcotte, M. M., Jones, G., Violle, C., Osborne, C. P., … Byun, C. (2018). Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology & Evolution, 2(11), 1808–1817. doi:10.1038/s41559-018-0690-4 https://doi.org/10.1038/s41559-018-0690-4

The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we invest…

Wan, J.-Z., Wang, C.-J., & Yu, F.-H. (2019). Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment, 652, 1071–1076. doi:10.1016/j.scitotenv.2018.10.280 https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…

Hoffmann, W. A., Flake, S. W., Abreu, R. C. R., Pilon, N. A. L., Rossatto, D. R., & Durigan, G. (2018). Rare frost events reinforce tropical savanna–forest boundaries. Journal of Ecology, 107(1), 468–477. doi:10.1111/1365-2745.13047 https://doi.org/10.1111/1365-2745.13047

1.The ability of vegetation to ameliorate or exacerbate environmental extremes can generate feedbacks that mediate the distribution of biomes. It has been suggested that feedbacks between vegetation and frost damage may be important for maintaining savanna, particularly at the edge of the tropics. 2…

Park, D. S., & Razafindratsima, O. H. (2018). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148–161. doi:10.1111/ecog.03825 https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …

Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034–6039. doi:10.1073/pnas.1713819115 https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…

VÁZQUEZ-GARCÍA, J.-A., NEILL, D. A., SHALISKO, V., ARROYO, F., & MERINO-SANTI, R. E. (2018). Magnolia mercedesiarum (subsect. Talauma, Magnoliaceae): a new Andean species from northern Ecuador, with insights into its potential distribution. Phytotaxa, 348(4), 254. doi:10.11646/phytotaxa.348.4.2 https://doi.org/10.11646/phytotaxa.348.4.2

Magnolia mercedesiarum, a new species from the eastern slopes of the Andes in northern Ecuador, is described and illustrated, and a key to Ecuadorian Magnolia (subsect. Talauma) is provided. This species differs from M. vargasiana in having broadly elliptic leaves that have an obtuse base vs. suborb…

Reichgelt, T., West, C. K., & Greenwood, D. R. (2018). The relation between global palm distribution and climate. Scientific Reports, 8(1). doi:10.1038/s41598-018-23147-2 https://doi.org/10.1038/s41598-018-23147-2

Fossil palms provide qualitative evidence of (sub-) tropical conditions and frost-free winters in the geological past, including modern cold climate regions (e.g., boreal, or polar climates). The freeze intolerance of palms varies across different organs and life stages, with seedlings in particular…

Manchego, C. E., Hildebrandt, P., Cueva, J., Espinosa, C. I., Stimm, B., & Günter, S. (2017). Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLOS ONE, 12(12), e0190092. doi:10.1371/journal.pone.0190092 https://doi.org/10.1371/journal.pone.0190092

Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial range…

Grossenbacher, D. L., Brandvain, Y., Auld, J. R., Burd, M., Cheptou, P.-O., Conner, J. K., … Goldberg, E. E. (2017). Self-compatibility is over-represented on islands. New Phytologist, 215(1), 469–478. doi:10.1111/nph.14534 https://doi.org/10.1111/nph.14534

Because establishing a new population often depends critically on finding mates, individuals capable of uniparental reproduction may have a colonization advantage. Accordingly, there should be an over-representation of colonizing species in which individuals can reproduce without a mate, particularl…

Antonelli, A., Hettling, H., Condamine, F. L., Vos, K., Nilsson, R. H., Sanderson, M. J., … Vos, R. A. (2016). Toward a Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa. Systematic Biology, syw066. doi:10.1093/sysbio/syw066 https://doi.org/10.1093/sysbio/syw066

Rapidly growing biological data –including molecular sequences and fossils– hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyse these data for re…