Wissenschaft ermöglicht durch Exemplardaten

White, S. V., and A. M. Royer. 2024. Floral colour variation across life history and geography in Mimulus ringens (Phrymaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad065

Floral and life history traits play important roles in plant speciation. The genus Mimulus is a model system for studying speciation. It includes examples of species in which floral colour facilitates isolation through pollinator shifts, as well as life history changes that result in temporal or ecogeographic isolation. We investigate the possibility that both floral colour and life history have shifted together in a recently described, genetically distinct group within the species Mimulus ringens. Using a large, range-wide citizen science dataset, we test for geographic trends in flower colour and flowering time. We combine this with greenhouse studies in populations of known life history to test for differences in flower colour with life history. We show that darker-flowered plants are more common at higher latitudes, that annual-like populations have darker flowers, and that flowering time varies with latitude only in the subset of populations that have lighter flowers. This suggests that annual-like populations (with the earlier flowering time typical of this life history) are restricted to the northern part of the species range and may have distinct trends in flowering date.

Prochazka, L. S., S. Alcantara, J. G. Rando, T. Vasconcelos, R. C. Pizzardo, and A. Nogueira. 2024. Resource availability and disturbance frequency shape evolution of plant life forms in Neotropical habitats. New Phytologist. https://doi.org/10.1111/nph.19601

Organisms use diverse strategies to thrive in varying habitats. While life history theory partly explains these relationships, the combined impact of resource availability and disturbance frequency on life form strategy evolution has received limited attention.We use Chamaecrista species, a legume plant lineage with a high diversity of plant life forms in the Neotropics, and employ ecological niche modeling and comparative phylogenetic methods to examine the correlated evolution of plant life forms and environmental niches.Chamaephytes and phanerophytes have optima in environments characterized by moderate water and nutrient availability coupled with infrequent fire disturbances. By contrast, annual plants thrive in environments with scarce water and nutrients, alongside frequent fire disturbances. Similarly, geophyte species also show increased resistance to frequent fire disturbances, although they thrive in resource‐rich environments.Our findings shed light on the evolution of plant strategies along environmental gradients, highlighting that annuals and geophytes respond differently to high incidences of fire disturbances, with one enduring it as seeds in a resource‐limited habitat and the other relying on reserves and root resprouting systems in resource‐abundant habitats. Furthermore, it deepens our understanding of how organisms evolve associated with their habitats, emphasizing a constraint posed by low‐resource and high‐disturbance environments.

Xiao, S., S. Li, J. Huang, X. Wang, M. Wu, R. Karim, W. Deng, and T. Su. 2024. Influence of climate factors on the global dynamic distribution of Tsuga (Pinaceae). Ecological Indicators 158: 111533. https://doi.org/10.1016/j.ecolind.2023.111533

Throughout the Quaternary period, climate change has significantly influenced plant distribution, particularly affecting species within the genus Tsuga (Endl.) Carrière. This climatic impact ultimately led to the extinction of all Tsuga species in Europe. Today, there are ten recognized species of Tsuga worldwide, one of listed as a vulnerable species and four as near-threatened species. The genus Tsuga exhibits a disjunctive distribution in East Asia (EA), eastern North America (ENA), and western North America (WNA). It is crucial to comprehend the mechanisms underlying these distributional changes and to identify key climate variables to develop effective conservation strategies for Tsuga under future climate scenarios. In this study, we applied the maximum entropy (MaxEnt) model by combining distribution data for Tsuga with abundant pollen fossil data. Our objective was to investigate the climate factors that shape the distribution of Tsuga, identify climate thresholds, and elucidate distribution dynamics in the context of significant climate changes over the past 1070 thousand years (ka). Our findings highlight the pivotal role of precipitation as the key climate factor affecting the distribution of Tsuga. Specifically, in EA, summer precipitation was the key driver, while in North America (NA), winter precipitation exerted greater importance. Moreover, we observed similarities in climatic requirements between Tsuga species in Europe and EA, and declines in summer precipitation and winter temperature were major factors contributing to the extinction of Tsuga species in Europe. Quaternary glacial and interglacial fluctuations exerted substantial impacts on Tsuga distribution dynamics. The disappearance of Tsuga species in the Korean Peninsula may have occurred during the LGM (Last Glacial Maximum). The potential suitable area for Tsuga species in EA expanded during the cold periods, while in NA, it contracted. In the future, climate change may result Tsuga distribution area contraction in both the EA and NA. Our study has identified distinct response patterns of Tsuga in various geographic regions to Quaternary climate change and offers corresponding suggestions for Tsuga conservation. In the future, it will be imperative to prioritize the conservation of natural Tsuga distributions in EA and NA, with a focus on the impacts of precipitation fluctuation on the dynamic distribution of this genus.

Qin, F., T. Xue, X. Zhang, X. Yang, J. Yu, S. R. Gadagkar, and S. Yu. 2023. Past climate cooling and orogenesis of the Hengduan Mountains have influenced the evolution of Impatiens sect. Impatiens (Balsaminaceae) in the Northern Hemisphere. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04625-w

Background Impatiens sect. Impatiens is distributed across the Northern Hemisphere and has diversified considerably, particularly within the Hengduan Mountains (HDM) in southwest China. Yet, the infra-sectional phylogenetic relationships are not well resolved, largely due to limited taxon sampling and an insufficient number of molecular markers. The evolutionary history of its diversification is also poorly understood. In this study, plastome data and the most complete sampling to date were used to reconstruct a robust phylogenetic framework for this section. The phylogeny was then used to investigate its biogeographical history and diversification patterns, specifically with the aim of understanding the role played by the HDM and past climatic changes in its diversification. Results A stable phylogeny was reconstructed that strongly supported both the monophyly of the section and its division into seven major clades (Clades I-VII). Molecular dating and ancestral area reconstruction suggest that sect. Impatiens originated in the HDM and Southeast China around 11.76 Ma, after which different lineages dispersed to Northwest China, temperate Eurasia, and North America, mainly during the Pliocene and Pleistocene. An intercontinental dispersal event from East Asia to western North America may have occurred via the Bering Land Bridge or Aleutian Islands. The diversification rate was high during its early history, especially with the HDM, but gradually decreased over time both within and outside the HDM. Multiple linear regression analysis showed that the distribution pattern of species richness was strongly associated with elevation range, elevation, and mean annual temperature. Finally, ancestral niche analysis indicated that sect. Impatiens originated in a relatively cool, middle-elevation area. Conclusions We inferred the evolutionary history of sect. Impatiens based on a solid phylogenetic framework. The HDM was the primary source or pump of its diversity in the Northern Hemisphere. Orogeny and climate change may have also shaped its diversification rates, as a steady decrease in the diversification rate coincided with the uplift of the HDM and climate cooling. These findings provide insights into the distribution pattern of sect. Impatiens and other plants in the Northern Hemisphere.

Kudoh, A., J. P. Megonigal, J. A. Langley, G. L. Noyce, T. Sakai, and D. F. Whigham. 2023. Reproductive Responses to Increased Shoot Density and Global Change Drivers in a Widespread Clonal Wetland Species, Schoenoplectus americanus. Estuaries and Coasts. https://doi.org/10.1007/s12237-023-01249-z

The expansion of many wetland species is a function of both clonal propagation and sexual reproduction. The production of ramets through clonal propagation enables plants to move and occupy space near parent ramets, while seeds produced by sexual reproduction enable species to disperse and colonize open or disturbed sites both near and far from parents. The balance between clonal propagation and sexual reproduction is known to vary with plant density but few studies have focused on reproductive allocation with density changes in response to global climate change. Schoenoplectus americanus is a widespread clonal wetland species in North America and a dominant species in Chesapeake Bay brackish tidal wetlands. Long-term experiments on responses of S . americanus to global change provided the opportunity to compare the two modes of propagation under different treatments. Seed production increased with increasing shoot density, supporting the hypothesis that factors causing increased clonal reproduction (e.g., higher shoot density) stimulate sexual reproduction and dispersal of genets. The increase in allocation to sexual reproduction was mainly the result of an increase in the number of ramets that flowered and not an increase in the number of seeds per reproductive shoot, or the ratio between the number of flowers produced per inflorescence and the number of flowers that developed into seeds. Seed production increased in response to increasing temperatures and decreased or did not change in response to increased CO 2 or nitrogen. Results from this comparative study demonstrate that plant responses to global change treatments affect resource allocation and can alter the ability of species to produce seeds.

Barrett, C. F., C. W. Corbett, and H. L. Thixton-Nolan. 2023. A lack of population structure characterizes the invasive Lonicera japonica in West Virginia and across eastern North America1,2. The Journal of the Torrey Botanical Society 150. https://doi.org/10.3159/torrey-d-23-00007.1

Invasive plant species cause massive ecosystem damage globally yet represent powerful case studies in population genetics and rapid adaptation to new habitats. The availability of digitized herbarium collections data, and the ubiquity of invasive species across the landscape make them highly accessible for studies of invasion history and population dynamics associated with their introduction, establishment, spread, and ecological interactions. Here we focus on Lonicera japonica, one of the most damaging invasive vine species in North America. We leveraged digitized collections data and contemporary field collections to reconstruct the invasion history and characterize patterns of genomic variation in the eastern USA, using a straightforward method for generating nucleotide polymorphism data and a recently published, chromosome-level genome for the species. We found an overall lack of population structure among sites in northern West Virginia, USA, as well as across sites in the central and eastern USA. Heterozygosity and population differentiation were both low based on FST analysis of molecular variance, principal components analysis, and cluster-based analyses. We also found evidence of high inbreeding coefficients and significant linkage disequilibrium, in line with the ability of this otherwise outcrossing, perennial species to propagate vegetatively. Our findings corroborate earlier studies based on allozyme data, and suggest that intentional, human-assisted spread explains the lack of population structure, as this species was planted for erosion control and as an ornamental, escaping cultivation repeatedly across the USA.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Graham, C. D. K., E. J. Forrestel, A. L. Schilmiller, A. T. Zemenick, and M. G. Weber. 2023. Evolutionary signatures of a trade-off in direct and indirect defenses across the wild grape genus Vitis. Evolution. https://doi.org/10.1093/evolut/qpad140

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these pattern remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism, and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlate with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.

Nikkel, E., D. R. Clements, D. Anderson, and J. L. Williams. 2023. Regional habitat suitability for aquatic and terrestrial invasive plant species may expand or contract with climate change. Biological Invasions. https://doi.org/10.1007/s10530-023-03139-8

The threat of invasive species to biodiversity and ecosystem structure is exacerbated by the increasingly concerning outlook of predicted climate change and other human influences. Developing preventative management strategies for invasive plant species before they establish is crucial for effective management. To examine how climate change may impact habitat suitability, we modeled the current and future habitat suitability of two terrestrial species, Geranium lucidum and Pilosella officinarum , and two aquatic species, Butomus umbellatus and Pontederia crassipes , that are relatively new invasive plant species regionally, and are currently spreading in the Pacific Northwest (PNW, North America), an area of unique natural areas, vibrant economic activity, and increasing human population. Using North American presence records, downscaled climate variables, and human influence data, we developed an ensemble model of six algorithms to predict the potential habitat suitability under current conditions and projected climate scenarios RCP 4.5, 7.0, and 8.5 for 2050 and 2080. One terrestrial species ( P. officinarum ) showed declining habitat suitability in future climate scenarios (contracted distribution), while the other terrestrial species ( G. lucidum ) showed increased suitability over much of the region (expanded distribution overall). The two aquatic species were predicted to have only moderately increased suitability, suggesting aquatic plant species may be less impacted by climate change. Our research provides a template for regional-scale modelling of invasive species of concern, thus assisting local land managers and practitioners to inform current and future management strategies and to prioritize limited available resources for species with expanding ranges.