Wissenschaft ermöglicht durch Exemplardaten

Holzmeyer, L., A.-K. Hartig, K. Franke, W. Brandt, A. N. Muellner-Riehl, L. A. Wessjohann, and J. Schnitzler. 2020. Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences 117: 12444–12451. https://doi.org/10.1073/pnas.1915277117

Antibiotic resistance and viral diseases are rising around the world and are becoming major threats to global health, food security, and development. One measure that has been suggested to mitigate this crisis is the development of new antibiotics. Here, we provide a comprehensive evaluation of the …

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Henareh Khalyani, A., W. A. Gould, M. J. Falkowski, R. Muscarella, M. Uriarte, and F. Yousef. 2019. Climate change increases potential plant species richness on Puerto Rican uplands. Climatic Change 156: 15–30. https://doi.org/10.1007/s10584-019-02491-w

Modeling climate change effects on species and communities is critical especially in isolated islands. We analyzed the potential effects of climate change on 200 plant species in Puerto Rico under two emission scenarios and in four periods over the twenty-first century. Our approach was based on ens…

Margaroni, S., K. B. Petersen, R. Gleadow, and M. Burd. 2019. The role of spore size in the global pattern of co‐occurrence among Selaginella species. Journal of Biogeography 46: 807–815. https://doi.org/10.1111/jbi.13532

Aim: Separation of regeneration niches may promote coexistence among closely related plant species, but there is little evidence that regeneration traits affect species ranges at broad geographical scales. We address patterns of co‐occurrence within the genus Selaginella, an ancient lineage of free‐…

Park, D. S., and O. H. Razafindratsima. 2018. Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography 42: 148–161. https://doi.org/10.1111/ecog.03825

Determining the mechanisms that underlie species distributions and assemblages is necessary to effectively preserve biodiversity. This cannot be accomplished by examining a single taxonomic group, as communities comprise a plethora of interactions across species and trophic levels. Here, we examine …

Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro, and F. L. Condamine. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039. https://doi.org/10.1073/pnas.1713819115

The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…

Petersen, K. B., and M. Burd. 2018. The adaptive value of heterospory: Evidence from Selaginella. Evolution 72: 1080–1091. https://doi.org/10.1111/evo.13484

Heterospory was a pivotal evolutionary innovation for land plants, but it has never been clear why it evolved. We used the geographic distributions of 114 species of the heterosporous lycophyte Selaginella to explore the functional ecology of microspore and megaspore size, traits that would be corre…