Wissenschaft ermöglicht durch Exemplardaten
Blades, B., C. Ronquillo, and J. Hortal. 2025. Mobilisation of Data From Natural History Collections Can Increase the Quality and Coverage of Biodiversity Information. Ecology and Evolution 15. https://doi.org/10.1002/ece3.71139
The surge of biodiversity data availability in recent decades has allowed researchers to ask questions on previously unthinkable scales, but knowledge gaps still remain. In this study, we aim to quantify potential gains to insect data on the Global Biodiversity Information Facility (GBIF) through further digitisation of natural history collections, assess to what degree this would fill biases in spatial and environmental record coverage, and deepen understanding of environmental bias with regard to climate rarity. Using mainland Afrotropical records for Catharsius Hope, 1837 (Coleoptera: Scarabaeidae), we compared inventory completeness of GBIF data to a dataset which combined these with records from a recent taxonomic revision. We analysed how this improved dataset reduced regional and environmental bias in the distribution of occurrence records using an approach that identifies well‐surveyed spatial units of 100 × 100km as well as emerging techniques to classify rarity of climates. We found that the number of cells for which inventory completeness could be calculated, as well as coverage of climate types by ‘well‐sampled’ cells, increased threefold when using the combined set compared to the GBIF set. Improvements to sampling in Central and Western Africa were particularly striking, and coverage of rare climates was similarly improved, as not a single well‐sampled cell from the GBIF data alone occurred in the rarest climate types. These findings support existing literature that suggests data gaps on GBIF are still pervasive, especially for insects and in the tropics, and so, is not yet ready to serve as a standalone data source for all taxa. However, we show that natural history collections hold the necessary information to fill many of these gaps, and their further digitisation should be a priority.
Mirzaee, Z., M. Wiemers, and T. Schmitt. 2025. A checklist of Mantodea for Myanmar with the first record of Schizocephala bicornis (Mantodea, Eremiaphilidae) for the country. ZooKeys 1232: 379–412. https://doi.org/10.3897/zookeys.1232.141810
AbstractThis paper presents the first comprehensive checklist of Mantodea species in Myanmar, reporting a total of 54 species belonging to 11 families and 32 genera, one of which (i.e., Schizocephalabicornis) constitutes a new record for the country. Four species, Creobroterurbanus, Gonypetabrunneri, Theopompaservillei, and Rhomboderalaticollis, are considered doubtful within Myanmar’s fauna and require further investigation to confirm their presence. Additionally, Aethalochroaashmoliana, Gonypetapunctata, and Toxoderopsistaurus are regarded as erroneous records.
Tu, W., Y. Du, Y. E. Stuart, Y. Li, Y. Wang, Q. Wu, B. Guo, and X. Liu. 2024. Biological invasion is eroding the unique assembly of island herpetofauna worldwide. Biological Conservation 300: 110853. https://doi.org/10.1016/j.biocon.2024.110853
Island ecosystems have significant conservation value owing to their higher endemic biotas. Moreover, studies of regional communities that compare differences in species composition (species dissimilarity) among islands and the mainland suggest that community assembly on islands is different from that on the mainland. However, the uniqueness of island biotic assembly has been little studied at the global scale, nor have phylogenetic information or alien species been considered in these patterns. We evaluate taxonomic and phylogenetic change from one community to the next, focusing on differences in species composition between mainland-mainland (M-M) pairs compared to differences between mainland-island pairs (M-I) and between island-island pairs (I-I), using herpetofauna on islands and adjacent mainland areas worldwide. Our analyses detect greater taxonomic and phylogenetic dissimilarity for M-I and I-I comparisons than predicted by M-M model, indicating different island herpetofauna assembly patterns compared with mainland counterparts across the world. However, this higher M-I dissimilarity has been significantly decreased after considering alien species. Our results provide global evidence on the importance of island biodiversity conservation from the aspect of both the taxonomic and phylogenetic uniqueness of island biotic assembly.
Wu, D., C. Liu, F. S. Caron, Y. Luo, M. R. Pie, M. Yu, P. Eggleton, and C. Chu. 2024. Habitat fragmentation drives pest termite risk in humid, but not arid, biomes. One Earth 7: 2049–2062. https://doi.org/10.1016/j.oneear.2024.10.003
Predicting global change effects poses significant challenges due to the intricate interplay between climate change and anthropogenic stressors in shaping ecological communities and their function, such as pest outbreak risk. Termites are ecosystem engineers, yet some pest species are causing worldwide economic losses. While habitat fragmentation seems to drive pest-dominated termite communities, its interaction with climate change effect remains unknown. We test whether climate and habitat fragmentation interactively alter interspecific competition that may limit pest termite risk. Leveraging global termite co-occurrence including 280 pest species, we found that competitively superior termite species (e.g., large bodied) increased in large and continuous habitats solely at high precipitation. While competitive species suppressed pest species globally, habitat fragmentation drove pest termite risk only in humid biomes. Unfortunately, hu- mid tropics have experienced vast forest fragmentation and rainfall reduction over the past decades. These stressors, if not stopped, may drive pest termite risk, potentially via competitive release.
Morim Gomes, M., B. Moreira Carvalho, and M. Souto Couri. 2024. Distribution of Sarcophagidae (Diptera, Oestroidea) in Brazilian biomes: richness, endemism, and sampling gaps. Studies on Neotropical Fauna and Environment: 1–11. https://doi.org/10.1080/01650521.2024.2380155
Sarcophagid experts have made several efforts to associate biodiversity data and comprehend where each species occurs, but comprehensive faunal inventories remain scarce. Our aim was to provide a list of distributional patterns and endemic species and allow assessment of the sampling effort conducted within Brazilian biomes. We produced a dataset of Brazilian sarcophagids and overlaid with a biome map, to investigate distributional patterns, endemism and to build species accumulation curves. Additionally, we calculated nonparametric asymptotic species richness estimators and extrapolation of species diversity (Hill numbers). Our dataset comprised 288 sarcophagid species, which 21 were identified as endemic. The biomes with the highest species richness were the Atlantic Rainforest and the Amazon Forest, and no biome exhibited a stabilized asymptotic curve. This is the first proposal of listing Sarcophagidae species by biomes and essential to understand the spatial distribution of this family in Brazil. We present maps and richness estimators that allow identifying gaps and guiding survey planning.
Li, Y., Y. Wang, and X. Liu. 2024. Half of global islands have reached critical area thresholds for undergoing rapid increases in biological invasions. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2024.0844
Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.
Li, D., X. Wang, K. Jiang, R. An, Y. Li, and D. Liu. 2024. The impact of climate change and the conservation of the keystone Asian honeybee using niche models and systematic prioritization C. Bahlai [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae018
Global warming has seriously disturbed the Earth’s ecosystems, and in this context, Asian honeybee (Apis cerana) has experienced a dramatic decline in recent decades. Here, we examined both direct and indirect effects of climate change on A. cerana through ecological niche modeling of A. cerana, and its disease pathogens (i.e., Chinese sacbrood virus and Melissococcus plutonius) and enemies (i.e., Galleria mellonella and Vespa mandarinia). Ecological niche modeling predicts that climate change will increase the potential suitability of A. cerana, but it will also cause some of the original habitat areas to become unsuitable. Outbreak risks of Chinese sacbrood disease and European Foulbrood will increase dramatically, while those of G. mellonella and V. mandarinia will decrease only slightly. Thus, climate change will produce an unfavorable situation for even maintaining some A. cerana populations in China in the future. Genetic structure analyses showed that the A. cerana population from Hainan Island had significant genetic differentiation from that of the mainland, and there was almost no gene flow between the 2, suggesting that urgent measures are needed to protect the unique genetic resources there. Through taking an integrated planning technique with the Marxan approach, we optimized conservation planning, and identified potential nature reserves (mainly in western Sichuan and southern Tibet) for conservation of A. cerana populations. Our results can provide insights into the potential impact of climate change on A. cerana, and will help to promote the conservation of the keystone honeybee in China and the long-term sustainability of its ecosystem services.
Lopes, D., E. de Andrade, A. Egartner, F. Beitia, M. Rot, C. Chireceanu, V. Balmés, et al. 2023. FRUITFLYRISKMANAGE: A Euphresco project for Ceratitis capitata Wiedemann (Diptera: Tephritidae) risk management applied in some European countries. EPPO Bulletin. https://doi.org/10.1111/epp.12922
Ceratitis capitata (Wiedemann), the Mediterranean fruit fly or medfly, is one of the world's most serious threats to fresh fruits. It is highly polyphagous (recorded from over 300 hosts) and capable of adapting to a wide range of climates. This pest has spread to the EPPO region and is mainly present in the southern part, damaging Citrus and Prunus. In Northern and Central Europe records refer to interceptions or short‐lived adventive populations only. Sustainable programs for surveillance, spread assessment using models and control strategies for pests such as C. capitata represent a major plant health challenge for all countries in Europe. This article includes a review of pest distribution and monitoring techniques in 11 countries of the EPPO region. This work compiles information that was crucial for a better understanding of pest occurrence and contributes to identifying areas susceptible to potential invasion and establishment. The key outputs and results obtained in the Euphresco project included knowledge transfer about early detection tools and methods used in different countries for pest monitoring. A MaxEnt software model resulted in risk maps for C. capitata in different climatic regions. This is an important tool to help decision making and to develop actions against this pest in the different partner countries.
Vijayan, S., and H. Somanathan. 2022. Migration in honey bees. Insectes Sociaux. https://doi.org/10.1007/s00040-022-00892-2
Migration studies include spectacular examples from vertebrates, such as birds, bats, and turtles. However, insect migration studies have lagged due to a restrictive definition of what entails migration and because of constraints in tracking insect movement. This has changed in recent times with studies on migratory butterflies, moths, and dragonflies. However, studies on collective migration by social insects such as honey bees are still largely lacking, despite their impact on ecosystem services, food security, and biodiversity. In this review, we synthesise findings from scattered studies on migration in a subset of honey bee species to better understand this phenomenon and to provide impetus for future research. As a general trend, migration in the genus Apis begins with a shift from a statary to a migratory phase within colonies, characterised by greater scout activity and consensus-building with respect to the direction of departure using migratory waggle dances. Once air-borne, the finer details of a swarm’s movement are unknown for any Apis species. Swarms reportedly make multiple stops, and while temporarily existing as comb-less clusters at these sites, the decision-making process occurs repeatedly, until nest-selection dances occur and the migratory phase finally culminates. We highlight the need for studies into the drivers and mechanisms of honey bee migration, as well as the promise of initiatives such as citizen science and tools such as pollen metabarcoding in studying migration in honey bees. This is particularly needed, given that rapidly changing habitats and climate could affect honey bee migration and the pollination services they provide.
Liu, S., S. Xia, D. Wu, J. E. Behm, Y. Meng, H. Yuan, P. Wen, et al. 2022. Understanding global and regional patterns of termite diversity and regional functional traits. iScience: 105538. https://doi.org/10.1016/j.isci.2022.105538
Our understanding of broad-scale biodiversity and functional trait patterns is largely based on plants, and relatively little information is available on soil arthropods. Here, we investigated the distribution of termite diversity globally and morphological traits and diversity across China. Our analyses showed increasing termite species richness with decreasing latitude at both the globally, and within-China. Additionally, we detected obvious latitudinal trends in the mean community value of termite morphological traits on average, with body size and leg length decreasing with increasing latitude. Furthermore, temperature, NDVI and water variables were the most important drivers controlling the variation in termite richness, and temperature and soil properties were key drivers of the geographic distribution of termite morphological traits. Our global termite richness map is one of the first high resolution maps for any arthropod group and especially given the functional importance of termites, our work provides a useful baseline for further ecological analysis.