Wissenschaft ermöglicht durch Exemplardaten

Calvente, A., A. P. Alves da Silva, D. Edler, F. A. Carvalho, M. R. Fantinati, A. Zizka, and A. Antonelli. 2023. Spiny but photogenic: amateur sightings complement herbarium specimens to reveal the bioregions of cacti. American Journal of Botany. https://doi.org/10.1002/ajb2.16235

Premise: Cacti are characteristic elements of the Neotropical flora and of major interest for biogeographic, evolutionary, and ecological studies. Here we test global biogeographic boundaries for Neotropical Cactaceae using specimen‐based occurrences coupled with data from visual observations, as a means to tackle the known collection biases in the family.MethodsSpecies richness and record density were assessed for preserved specimens and human observations and a bioregional scheme tailored to Cactaceae was produced using the interactive web application Infomap Bioregions based on data from 261,272 point records cleaned through automated and manual steps.Key ResultsWe find that areas in Mexico and southwestern USA, Eastern Brazil and along the Andean region have the greatest density of records and the highest species richness. Human observations complement information from preserved specimens substantially, especially along the Andes. We propose 24 cacti bioregions, among which the most species‐rich are: northern Mexico/southwestern USA, central Mexico, southern central Mexico, Central America, Mexican Pacific coast, central and southern Andes, northwestern Mexico/extreme southwestern USA, southwestern Bolivia, northeastern Brazil, Mexico/Baja California.ConclusionsThe bioregionalization proposed shows biogeographical boundaries specific to cacti, and can thereby aid further evolutionary, biogeographic, and ecological studies by providing a validated framework for further analyses. This classification builds upon, and is distinctive from, other expert‐derived regionalization schemes for other taxa. Our results showcase how observation data, including citizen‐science records, can complement traditional specimen‐based data for biogeographic research, particularly for taxa with specific specimen collection and preservation challenges and those that are threatened or internationally protected.This article is protected by copyright. All rights reserved.

Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737

Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.

Hill, A., M. F. T. Jiménez, N. Chazot, C. Cássia‐Silva, S. Faurby, L. Herrera‐Alsina, and C. D. Bacon. 2023. Apparent effect of range size and fruit colour on palm diversification may be spurious. Journal of Biogeography. https://doi.org/10.1111/jbi.14683

Aim Fruit selection by animal dispersers with different mobility directly impacts plant geographical range size, which, in turn, may impact plant diversification. Here, we examine the interaction between fruit colour, range size and diversification rate in palms by testing two hypotheses: (1) species with fruit colours attractive to birds have larger range sizes due to high dispersal ability and (2) disperser mobility affects whether small or large range size has higher diversification, and intermediate range size is expected to lead to the highest diversification rate regardless of disperser. Location Global. Time Period Contemporary (or present). Major Taxa Studied Palms (Arecaceae). Methods Palm species were grouped based on likely animal disperser group for given fruit colours. Range sizes were estimated by constructing alpha convex hull polygons from distribution data. We examined disperser group, range size or an interaction of both as possible drivers of change in diversification rate over time in a likelihood dynamic model (Several Examined State-dependent Speciation and Extinction [SecSSE]). Models were fitted, rate estimates were retrieved and likelihoods were compared to those of appropriate null models. Results Species with fruit colours associated with mammal dispersal had larger ranges than those with colours associated with bird dispersal. The best fitting SecSSE models indicated that the examined traits were not the primary driver of the heterogeneity in diversification rates in the model. Extinction rate complexity had a marked impact on model performance and on diversification rates. Main Conclusions Two traits related to dispersal mobility, range size and fruit colour, were not identified as the main drivers of diversification in palms. Increased model extinction rate complexity led to better performing models, which indicates that net diversification should be estimated rather than speciation alone. However, increased complexity may lead to incorrect SecSSE model conclusions without careful consideration. Finally, we find palms with more mobile dispersers do not have larger range sizes, meaning other factors are more important determinants of range size.

Lima, V. P., R. A. Ferreira de Lima, F. Joner, L. D’Orangeville, N. Raes, I. Siddique, and H. ter Steege. 2023. Integrating climate change into agroforestry conservation: A case study on native plant species in the Brazilian Atlantic Forest. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14464

Designing multispecies systems with suitable climatic affinity and identifying species' vulnerability under human‐driven climate change are current challenges to achieve successful adaptation of natural systems. To address this problem, we need to (1) identify groups of species with climatic similarity under climate scenarios and (2) identify areas with high conservation value under predicted climate change.To recognize species with similar climatic niche requirements that can be grouped for mixed cropping in Brazil, we employed ecological niche models (ENMs) and Spearman's ρ for overlap. We also used prioritization algorithms to map areas of high conservation value using two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5) to assess mid‐term (2041–2060) and long‐term (2061–2080) climate change impacts.We identified 15 species groups with finer climatic affinities at different times depicted on hierarchical clustering dendrograms, which can be combined into agroecological agroforestry systems. Furthermore, we highlight the climatically suitable areas for these groups of species, thus providing an outlook of where different species will need to be planted over time to be conserved. In addition, we observed that climate change is predicted to modify the spatial association of these groups under different future climate scenarios, causing a mean negative change in species climatic similarity of 9.5% to 13.7% under SSP2‐4.5 scenario and 9.5% to 10.5% under SSP5‐8.5, for 2041–2060 and 2061–2080, respectively.Synthesis and applications. Our findings provide a framework for agroforestry conservation. The groups of species with finer climatic affinities identified and the climatically suitable areas can be combined into agroecological productive systems, and provide an outlook of where different species may be planted over time. In addition, the conservation priority zones displaying high climate stability for each species individually and all at once can be incorporated into Brazil's conservation plans by policymakers to prioritize specific sites. Lastly, we urge policymakers, conservation organizations and donors to promote interventions involving farmers and local communities, since the species' evaluated have proven to maintain landscapes with productive forest fragments and can be conserved in different Brazilian ecosystems.

Pang, S. E. H., J. W. F. Slik, D. Zurell, and E. L. Webb. 2023. The clustering of spatially associated species unravels patterns in tropical tree species distributions. Ecosphere 14. https://doi.org/10.1002/ecs2.4589

Complex distribution data can be summarized by grouping species with similar or overlapping distributions to unravel spatial patterns and separate trends (e.g., of habitat loss) among spatially unique groups. However, such classifications are often heuristic, lacking the transparency, objectivity, and data‐driven rigor of quantitative methods, which limits their interpretability and utility. Here, we develop and illustrate the clustering of spatially associated species, a methodological framework aimed at statistically classifying species using explicit measures of interspecific spatial association. We investigate several association indices and clustering algorithms and show how these methodological choices drive substantial variations in clustering outcomes and performance. To facilitate robust decision‐making, we provide guidance on choosing methods appropriate to one's study objective(s). As a case study, we apply our framework to modeled tree distributions in Borneo and subsequently evaluate the impact of land‐cover change on separate species groupings. Based on the modeled distribution of 390 tree species prior to anthropogenic land‐cover changes, we identified 11 distinct clusters that unraveled ecologically meaningful patterns in Bornean tree distributions. These clusters then enabled us to quantify trends of habitat loss tied to each of those specific clusters, allowing us to discern particularly vulnerable species clusters and their distributions. This study demonstrates the advantages of adopting quantitatively derived clusters of spatially associated species and elucidates the potential of resultant clusters as a spatially explicit framework for investigating distribution‐related questions in ecology, biogeography, and conservation. By adopting our methodological framework and publicly available codes, practitioners can leverage the ever‐growing abundance of distribution data to better understand complex spatial patterns among species distributions and the disparate effects of global changes on biodiversity.

Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261

Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Gómez Díaz, J. A., A. Lira-Noriega, and F. Villalobos. 2023. Expanding protected areas in a Neotropical hotspot. International Journal of Sustainable Development & World Ecology: 1–15. https://doi.org/10.1080/13504509.2022.2163717

The region of central Veracruz is considered a biodiversity hotspot due to its high species richness and environmental heterogeneity, but only 2% of this region is currently protected. This study aimed to assess the current protected area system’s effectiveness and to identify priority conservation areas for expanding the existing protected area system. We used the distribution models of 1186 species from three kingdoms (Animalia, Plantae, and Fungi) together with ZONATION software, a conservation planning tool, to determine areas that could help expand the current network of protected areas. We applied three different parametrizations (including only species, using the boundary quality penalty, and using corridor connectivity). We found that protecting an additional 15% of the area would increase, between 16.2% and 19.3%, the protection of the distribution area of all species. We propose that the regions with a consensus of the three parametrizations should be declared as new protected areas to expand 374 km2 to the 216 km2 already protected. Doing so would double the protected surface in central Veracruz. The priority areas identified in this study have more species richness, carbon stock values, natural vegetation cover, and less human impact index than the existing protected areas. If our identified priority areas are declared protected, we could expect a future recovery of endangered species populations for Veracruz. The proposed new protected areas are planned and designed as corridors connecting currently isolated protected areas to promote biodiversity protection.

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.