Wissenschaft ermöglicht durch Exemplardaten

Shirey, V., and J. Rabinovich. 2024. Climate change-induced degradation of expert range maps drawn for kissing bugs (Hemiptera: Reduviidae) and long-standing current and future sampling gaps across the Americas. Memórias do Instituto Oswaldo Cruz 119. https://doi.org/10.1590/0074-02760230100

BACKGROUND Kissing bugs are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Despite their epidemiological relevance, kissing bug species are under sampled in terms of their diversity and it is unclear what biases exist in available kissing bug data. Under climate change, range maps for kissing bugs may become less accurate as species shift their ranges to track climatic tolerance. OBJECTIVES Quantify inventory completeness in available kissing bug data. Assess how well range maps are at conveying information about current distributions and potential future distributions subject to shift under climate change. Intersect forecasted changes in kissing bug distributions with contemporary sampling gaps to identify regions for future sampling of the group. Identify whether a phylogenetic signal is present in expert range knowledge as more closely related species may be similarly well or lesser understood. METHODS We used species distribution models (SDM), specifically constructed from Bayesian additive regression trees, with Bioclim variables, to forecast kissing bug distributions into 2100 and intersect these with current sampling gaps to identify priority regions for sampling. Expert range maps were assessed by the agreement between the expert map and SDM generated occurrence probability. We used classical hypothesis testing methods as well as tests of phylogenetic signal to meet our objectives. FINDINGS Expert range maps vary in their quality of depicting current kissing bug distributions. Most expert range maps decline in their ability to convey information about kissing bug occurrence over time, especially in under sampled areas. We found limited evidence for a phylogenetic signal in expert range map performance. MAIN CONCLUSIONS Expert range maps are not a perfect account of species distributions and may degrade in their ability to accurately convey distribution knowledge under future climates. We identify regions where future sampling of kissing bugs will be crucial for completing biodiversity inventories.

Graham, K. K., P. Glaum, J. Hartert, J. Gibbs, E. Tucker, R. Isaacs, and F. S. Valdovinos. 2024. A century of wild bee sampling: historical data and neural network analysis reveal ecological traits associated with species loss. Proceedings of the Royal Society B: Biological Sciences 291. https://doi.org/10.1098/rspb.2023.2837

We analysed the wild bee community sampled from 1921 to 2018 at a nature preserve in southern Michigan, USA, to study long-term community shifts in a protected area. During an intensive survey in 1972 and 1973, Francis C. Evans detected 135 bee species. In the most recent intensive surveys conducted in 2017 and 2018, we recorded 90 species. Only 58 species were recorded in both sampling periods, indicating a significant shift in the bee community. We found that the bee community diversity, species richness and evenness were all lower in recent samples. Additionally, 64% of the more common species exhibited a more than 30% decline in relative abundance. Neural network analysis of species traits revealed that extirpation from the reserve was most likely for oligolectic ground-nesting bees and kleptoparasitic bees, whereas polylectic cavity-nesting bees were more likely to persist. Having longer phenological ranges also increased the chance of persistence in polylectic species. Further analysis suggests a climate response as bees in the contemporary sampling period had a more southerly overall distribution compared to the historic community. Results exhibit the utility of both long-term data and machine learning in disentangling complex indicators of bee population trajectories.

Caron, F. S., D. Rivadeneira, J. Rabinovich, M. R. Pie, and J. Morimoto. 2024. Range size positively correlates with temperature and precipitation niche breadths but not with dietary niche breadth in triatomine insects, vectors of Chagas disease K. Kirchgatter [ed.],. PLOS Neglected Tropical Diseases 18: e0012430. https://doi.org/10.1371/journal.pntd.0012430

Ecological theory predicts that species that can utilise a greater diversity of resources and, therefore, have wider niche breadths should also occupy larger geographic areas (the ‘niche breadth-range size hypothesis’). Here, we tested this hypothesis for a blood-sucking group of insects of medical significance: the Triatominae (aka ‘kissing bugs’) (Hemiptera: Reduviidae). Given that niches can be viewed from different perspectives, we tested this hypothesis based on both dietary and climatic niches. We assembled the most complete dataset of triatomine feeding patterns to date by reviewing 143 studies from the literature up to 2021 and tested whether the niche breadth-range size hypothesis held for this group for both dietary and climatic components of the niche. Temperature and precipitation niche breadths were estimated from macro-environmental variables, while diet breadth was calculated based on literature data that used PCR and/or ELISA to identify different types of hosts as blood sources per triatomine species. Our results showed that temperature and precipitation niche breadths, but not dietary breadth, were positively correlated with range sizes, independent of evolutionary history among species. These findings support the predictions from the range size-niche breadth hypothesis concerning climate but not diet, in Triatominae. It also shows that support for the niche breadth-range size hypothesis is dependent upon the niche axis under consideration, which can explain the mixed support for this hypothesis in the ecological literature.

Grether, G. F., A. E. Finneran, and J. P. Drury. 2023. Niche differentiation, reproductive interference, and range expansion. Ecology Letters. https://doi.org/10.1111/ele.14350

Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.

Pelletier, D., and J. R. K. Forrest. 2022. Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae). Ecological Entomology. https://doi.org/10.1111/een.13211

Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host‐plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).Several studies have shown greater interannual variation in flowering phenology for earlier‐flowering plants than later‐flowering plants, suggesting that early‐season bees may experience substantial year‐to‐year variation in the floral taxa available to them.It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.

Lu, L.-L., B.-H. Jiao, F. Qin, G. Xie, K.-Q. Lu, J.-F. Li, B. Sun, et al. 2022. Artemisia pollen dataset for exploring the potential ecological indicators in deep time. Earth System Science Data 14: 3961–3995. https://doi.org/10.5194/essd-14-3961-2022

Abstract. Artemisia, along with Chenopodiaceae, is the dominant component growing in the desert and dry grassland of the Northern Hemisphere. Artemisia pollen with its high productivity, wide distribution, and easy identification is usually regarded as an eco-indicator for assessing aridity and distinguishing grassland from desert vegetation in terms of the pollen relative abundance ratio of Chenopodiaceae/Artemisia (C/A). Nevertheless, divergent opinions on the degree of aridity evaluated by Artemisia pollen have been circulating in the palynological community for a long time. To solve the confusion, we first selected 36 species from nine clades and three outgroups of Artemisia based on the phylogenetic framework, which attempts to cover the maximum range of pollen morphological variation. Then, sampling, experiments, photography, and measurements were taken using standard methods. Here, we present pollen datasets containing 4018 original pollen photographs, 9360 pollen morphological trait measurements, information on 30 858 source plant occurrences, and corresponding environmental factors. Hierarchical cluster analysis on pollen morphological traits was carried out to subdivide Artemisia pollen into three types. When plotting the three pollen types of Artemisia onto the global terrestrial biomes, different pollen types of Artemisia were found to have different habitat ranges. These findings change the traditional concept of Artemisia being restricted to arid and semi-arid environments. The data framework that we designed is open and expandable for new pollen data of Artemisia worldwide. In the future, linking pollen morphology with habitat via these pollen datasets will create additional knowledge that will increase the resolution of the ecological environment in the geological past. The Artemisia pollen datasets are freely available at Zenodo (https://doi.org/10.5281/zenodo.6900308; Lu et al., 2022).

Boyd, R. J., M. A. Aizen, R. M. Barahona‐Segovia, L. Flores‐Prado, F. E. Fontúrbel, T. M. Francoy, M. Lopez‐Aliste, et al. 2022. Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts Y. Fourcade [ed.],. Diversity and Distributions 28: 1404–1415. https://doi.org/10.1111/ddi.13551

Aim Aggregated species occurrence data are increasingly accessible through public databases for the analysis of temporal trends in the geographic distributions of species. However, biases in these data present challenges for statistical inference. We assessed potential biases in data available through GBIF on the occurrences of four flower-visiting taxa: bees (Anthophila), hoverflies (Syrphidae), leaf-nosed bats (Phyllostomidae) and hummingbirds (Trochilidae). We also assessed whether and to what extent data mobilization efforts improved our ability to estimate trends in species' distributions. Location The Neotropics. Methods We used five data-driven heuristics to screen the data for potential geographic, temporal and taxonomic biases. We began with a continental-scale assessment of the data for all four taxa. We then identified two recent data mobilization efforts (2021) that drastically increased the quantity of records of bees collected in Chile available through GBIF. We compared the dataset before and after the addition of these new records in terms of their biases and estimated trends in species' distributions. Results We found evidence of potential sampling biases for all taxa. The addition of newly-mobilized records of bees in Chile decreased some biases but introduced others. Despite increasing the quantity of data for bees in Chile sixfold, estimates of trends in species' distributions derived using the postmobilization dataset were broadly similar to what would have been estimated before their introduction, albeit more precise. Main conclusions Our results highlight the challenges associated with drawing robust inferences about trends in species' distributions using publicly available data. Mobilizing historic records will not always enable trend estimation because more data do not necessarily equal less bias. Analysts should carefully assess their data before conducting analyses: this might enable the estimation of more robust trends and help to identify strategies for effective data mobilization. Our study also reinforces the need for targeted monitoring of pollinators worldwide.

Shirey, V., R. Khelifa, L. K. M’Gonigle, and L. M. Guzman. 2022. Occupancy–detection models with museum specimen data: Promise and pitfalls. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210x.13896

1. Historical museum records provide potentially useful data for identifying drivers of change in species occupancy. However, because museum records are typically obtained via many collection methods, methodological developments are needed in order to enable robust inferences. Occupancy‐detection models, a relatively new and powerful suite of statistical methods, are a potentially promising avenue because they can account for changes in collection effort through space and time.

Wham, B. E., S. R. Rahman, M. Martinez‐Correa, and H. M. Hines. 2021. Mito‐nuclear discordance at a mimicry color transition zone in bumble bee Bombus melanopygus. Ecology and Evolution 11: 18151–18168. https://doi.org/10.1002/ece3.8412

As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee, Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Roc…

Sirois‐Delisle, C., and J. T. Kerr. 2021. Climate change aggravates non‐target effects of pesticides on dragonflies at macroecological scales. Ecological Applications 32. https://doi.org/10.1002/eap.2494

Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence …