Wissenschaft ermöglicht durch Exemplardaten

Rodríguez-Rey, M., and B. Whittaker. 2023. The global ecological niche of lumpfish (Cyclopterus lumpus) and predicted range shifts under climate change. Hydrobiologia. https://doi.org/10.1007/s10750-023-05220-8

Lumpfish are a commercially significant marine fish that are harvested in roe fisheries and used as cleaner fish in salmon farming, however, little is known of the environmental factors shaping the ecological niche of the species at global scale. As captive reared lumpfish are sensitive to warm water, the geographic distribution of wild populations may change as sea temperatures rise under expected climate change. After investigating the ecological niche of the lumpfish using Species Distribution Models, we found that nitrate concentration, ice cover, diffuse attenuation, and temperature predicted the probability of lumpfish occurrence. Through modelling distribution under expected climate change forecasts within a realistic scenario, we found reduced probability of lumpfish occurrence in areas which currently support roe harvest and cleaner fish industry. Future conservation of the species and fisheries management should account for changes in lumpfish distribution as the range shifts northward.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Lal, M. M., K. T. Brown, P. Chand, and T. D. Pickering. 2022. An assessment of the aquaculture potential of indigenous freshwater food fish of Fiji, Papua New Guinea, Vanuatu, Solomon Islands, Samoa and Tonga as alternatives to farming of tilapia. Reviews in Aquaculture. https://doi.org/10.1111/raq.12749

An important driver behind introductions for aquaculture of alien fish species into Pacific Island Countries and Territories (PICTs) is a lack of knowledge about domestication suitability and specific culture requirements of indigenous taxa. Introductions may be appropriate in some circumstances, but in other circumstances, the associated risks may outweigh the benefits, so greater understanding of indigenous species' aquaculture potential is important. This review summarises literature for indigenous freshwater food fish species from Papua New Guinea, Fiji, Vanuatu, the Solomon Islands, Samoa and Tonga, and evaluates their aquaculture potential for food security and/or small‐scale livelihoods. A species selection criteria incorporating economic, social, biological and environmental spheres was used to score 62 candidate species. Tilapia (Oreochromis mossambicus and O. niloticus) now established in PICTs were evaluated for comparison. Results show that 13 species belonging to the families Mugilidae (Mullets), Terapontidae (Grunters), Kuhliidae (Flagtails) and Scatophagidae (Scats) have the highest culture potential according to selection criteria. These feed at a relatively low trophic level (are herbivores/detritivores), have comparatively fast growth rates and overall possess characteristics most amenable for small‐scale, inland aquaculture. The four top‐ranked candidates are all mountain mullets Cestraeus spp., followed by Nile tilapia (Oreochromis niloticus). Lower ranked candidates include three other mullets (Planiliza melinoptera, P. subviridis and Mugil cephalus) and rock flagtail Kuhlia rupestris. Importantly, many species remain data deficient in aspects of their reproductive biology or culture performance. Species profiles and ranked priority species by country are provided with logistical, technological and environmental assessments of country capacities to culture each species.

Ng, S. Z. H., Y. X. Ow, and Z. Jaafar. 2022. Dugongs (Dugong dugon) along hyper-urbanized coastlines. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.947700

Coastal development and the increased anthropogenic use of sea spaces have rapidly degraded coastal habitats throughout Southeast Asia. We study how these activities impact dugong (Dugong dugon) population(s) along hyper-urbanized coastlines of the Johor and Singapore Straits through literature reviews and field surveys. Our review recovered sixty-nine live observations and carcass observations of dugongs between 1820 and 2021. The eastern Johor Strait is identified as a dugong hotspot. We observed peaks in observations coincident with the Northeast and Southwest monsoons. Distribution patterns of dugong observations were likely driven by a combination of natural and anthropogenic factors such as seasonality in seagrass abundance, tidal cycles, wind patterns and vessel traffic. Our field surveys ascertained active foraging sites along the anthropogenically disturbed Johor Strait and western Singapore Strait. Evident from our study is the importance of reef-associated seagrass meadows as refugia for foraging dugongs along areas of high anthropogenic use. This study provides an ecological baseline for dugong research along the Johor and Singapore Straits—within the data-poor western Malay Archipelago—, and aids in the design of sustainable management strategies and conservation programs for dugongs along areas where urbanization is commonplace.

Kopperud, B. T., S. Lidgard, and L. H. Liow. 2022. Enhancing georeferenced biodiversity inventories: automated information extraction from literature records reveal the gaps. PeerJ 10: e13921. https://doi.org/10.7717/peerj.13921

We use natural language processing (NLP) to retrieve location data for cheilostome bryozoan species (text-mined occurrences (TMO)) in an automated procedure. We compare these results with data combined from two major public databases (DB): the Ocean Biodiversity Information System (OBIS), and the Global Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in combination, we present latitudinal species richness curves using standard estimators (Chao2 and the Jackknife) and range-through approaches. Our combined DB and TMO species richness curves quantitatively document a bimodal global latitudinal diversity gradient for extant cheilostomes for the first time, with peaks in the temperate zones. A total of 79% of the georeferenced species we retrieved from TMO (N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that global location data compiled for cheilostomes should be improved with concerted effort, our study supports the view that many marine latitudinal species richness patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover, combining online biodiversity databases with automated information retrieval from the published literature is a promising avenue for expanding taxon-location datasets.

Sánchez, C. A., H. Li, K. L. Phelps, C. Zambrana-Torrelio, L.-F. Wang, P. Zhou, Z.-L. Shi, et al. 2022. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nature Communications 13. https://doi.org/10.1038/s41467-022-31860-w

Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence. Coronaviruses may spill over from bats to humans. This study uses epidemiological data, species distribution models, and probabilistic risk assessment to map overlap among people and SARSr-CoV bat hosts and estimate how many people are infected with bat-origin SARSr-CoVs in Southeast Asia annually.

Bosso, L., S. Smeraldo, D. Russo, M. L. Chiusano, G. Bertorelle, K. Johannesson, R. K. Butlin, et al. 2022. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions. https://doi.org/10.1007/s10530-022-02838-y

Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this long-standing question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas , the Atlantic predator, but distinct from Pachygrapsus marmoratus , the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species’ distributions and biological invasions.

Qu, J., Y. Xu, Y. Cui, S. Wu, L. Wang, X. Liu, Z. Xing, et al. 2021. MODB: a comprehensive mitochondrial genome database for Mollusca. Database 2021. https://doi.org/10.1093/database/baab056

Mollusca is the largest marine phylum, comprising about 23% of all named marine organisms, Mollusca systematics are still in flux, and an increase in human activities has affected Molluscan reproduction and development, strongly impacting diversity and classification. Therefore, it is necessary to e…

Sharifuzzaman, S. M., I. A. Rubby, K. A. Habib, S. Kimura, Md. H. Rasid, Md. J. Islam, A. K. Neogi, and M. S. Hossain. 2021. Annotated checklist of ponyfishes (Perciformes: Leiognathidae) from Bangladesh, the northern Bay of Bengal. Journal of Fish Biology 99: 2044–2051. https://doi.org/10.1111/jfb.14890

Information on the taxonomy of ponyfishes (Leiognathidae Gill 1893) from Bangladesh was hitherto inadequate and details of some species were lacking. Based on specimens, the present study reports 12 species of ponyfishes from the coasts of Bangladesh with short descriptions of their diagnostic chara…