Wissenschaft ermöglicht durch Exemplardaten

Akinlabi, F. M., M. D. Pirie, and A. A. Oskolski. 2023. Fire, frost, and drought constrain the structural diversity of wood within southern African Erica (Ericaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad033

Erica comprises ~860 species of evergreen shrubs and trees ranged from Europe to southern Africa and Madagascar. Wood structure of the around 20 European species is well studied, but despite its relevance to adaptation across the wider geographic range, it has not yet been explored across the much greater diversity, particularly of southern African lineages. In this study, we examine wood structure of 28 Erica species from southern Africa. In the African Erica clade, loss of scalariform perforation plates could be driven by increased aridity and seasonality in the mid-Miocene, and its re-gain can represent an adaptation to freezing in the high elevation species E. nubigena. As vessels in Erica are mostly solitary, imperforate tracheary elements probably form a subsidiary conduit network instead of vessel groups. Increase of ray frequency in habitats with a prominent dry and hot season probably facilitates refilling of vessels after embolism caused by water stress. Wider rays are ancestral for the lineage comprising African Erica and the Mediterranean E. australis. The negative correlation between ray width and expression of summer drought is consistent with Ojeda’s model explaining the diversification of seeders and resprouters among southern African Erica.

Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737

Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.

Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19. https://doi.org/10.1080/0035919x.2023.2200742

South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.

Bharti, D. K., P. Y. Pawar, G. D. Edgecombe, and J. Joshi. 2023. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). Global Ecology and Biogeography. https://doi.org/10.1111/geb.13709

Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0–0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

Lee, F., N. C. Boddy, M. Bloxham, A. R. McIntosh, G. L. W. Perry, and K. S. Simon. 2023. Spatiotemporal patterns of research on Southern Hemisphere amphidromous galaxiids: A semi–quantitative review. Austral Ecology. https://doi.org/10.1111/aec.13315

Amphidromy is a distinctive life‐history strategy of some fish species that involves spawning in fresh or brackish water followed by dispersal to sea by newly hatched larvae, where they develop for a short period. Individuals then return to freshwater as juveniles, where they feed and grow, before maturing and spawning. Six amphidromous species from the Southern Hemisphere genus Galaxias (G. truttaceus, G. fasciatus, G. argenteus, G. postvectis, G. brevipinnis, G. maculatus) are recreationally, culturally, and economically important as the juveniles are harvested. Due to ongoing population declines and a lack of critical demographic information, there is growing concern about the management of the species. Here, we used semi‐quantitative review, culturomics, and bibliometric tools to analyse peer‐reviewed research conducted on the six amphidromous species of Galaxias to: (i) understand how spatiotemporal patterns of research have shifted over the last five decades, and (ii) identify critical research gaps. Forty percent of studies (n = 295) covered a spatial extent of 10 km or less and 87% of studies lasted less than 2 years – studies were largely small and short relative to the species' ranges and their longevity. Additionally, we found important research gaps; for example, studies on the effects of climate change and the associated effects of disturbance, and the marine phase are scarce in the peer‐reviewed literature. Finally, we suggest that quantitative models have been underutilized as tools for studying amphidromous galaxiids and should be embraced to answer questions not readily addressed with field and laboratory‐based techniques. If these species are to be effectively managed, their population dynamics across spatiotemporal scales must be understood and critical and long‐standing gaps in research knowledge addressed.

Barnes, C. L., N. W. Blay, and S. M. Wilder. 2023. Thermal tolerances of different life stages, sexes, and species of widow spiders (Araneae: Theridiidae). The Journal of Arachnology 51. https://doi.org/10.1636/joa-s-21-044

(no abstract available)

Marshall, B. M., C. T. Strine, C. S. Fukushima, P. Cardoso, M. C. Orr, and A. C. Hughes. 2022. Searching the web builds fuller picture of arachnid trade. Communications Biology 5. https://doi.org/10.1038/s42003-022-03374-0

Wildlife trade is a major driver of biodiversity loss, yet whilst the impacts of trade in some species are relatively well-known, some taxa, such as many invertebrates are often overlooked. Here we explore global patterns of trade in the arachnids, and detected 1,264 species from 66 families and 371 genera in trade. Trade in these groups exceeds millions of individuals, with 67% coming directly from the wild, and up to 99% of individuals in some genera. For popular taxa, such as tarantulas up to 50% are in trade, including 25% of species described since 2000. CITES only covers 30 (2%) of the species potentially traded. We mapped the percentage and number of species native to each country in trade. To enable sustainable trade, better data on species distributions and better conservation status assessments are needed. The disparity between trade data sources highlights the need to expand monitoring if impacts on wild populations are to be accurately gauged and the impacts of trade minimised. Trade in arachnids includes millions of individuals and over 1264 species, with over 70% of individuals coming from the wild.

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

McManamay, R. A., C. R. Vernon, and H. I. Jager. 2021. Global Biodiversity Implications of Alternative Electrification Strategies Under the Shared Socioeconomic Pathways. Biological Conservation 260: 109234. https://doi.org/10.1016/j.biocon.2021.109234

Addressing climate mitigation while meeting global electrification goals will require major transitions from fossil-fuel dependence to large-scale renewable energy deployment. However, renewables require significant land assets per unit energy and could come at high cost to ecosystems, creating pote…