Wissenschaft ermöglicht durch Exemplardaten

Li, K., J. Wang, L. Qiao, R. Zheng, Y. Ma, Y. Chen, X. Hou, et al. 2020. Diversity of Reproductive Phenology Among Subtropical Grasses Is Constrained by Evolution and Climatic Niche. Frontiers in Ecology and Evolution 8. https://doi.org/10.3389/fevo.2020.00181

Reproductive phenology is sensitive to climatic changes and is associated with species functional types, distribution ranges, and their corresponding climatic niches. Phylogenetic niche conservatism in reproductive phenology also constrains its diversity and the distribution of species. Therefore, w…

Boucher, F. C., A.-S. Quatela, A. G. Ellis, and G. A. Verboom. 2020. Diversification rate vs. diversification density: Decoupled consequences of plant height for diversification of Alooideae in time and space J. Hipólito [ed.],. PLOS ONE 15: e0233597. https://doi.org/10.1371/journal.pone.0233597

While biodiversity hotspots are typically identified on the basis of species number per unit area, their exceptional richness is often attributed, either implicitly or explicitly, to high diversification rates. High species concentrations, however, need not reflect rapid diversification, with the di…

Jahanshiri, E., N. M. Mohd Nizar, T. A. S. Tengku Mohd Suhairi, P. J. Gregory, A. S. Mohamed, E. M. Wimalasiri, and S. N. Azam-Ali. 2020. A Land Evaluation Framework for Agricultural Diversification. Sustainability 12: 3110. https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…

Lindberg, C. L., H. M. Hanslin, M. Schubert, T. Marcussen, B. Trevaskis, J. C. Preston, and S. Fjellheim. 2020. Increased above‐ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily. New Phytologist 228: 318–329. https://doi.org/10.1111/nph.16666

Semelparous annual plants flower a single time during their one‐year life cycle, investing much of their energy into rapid reproduction. In contrast, iteroparous perennial plants flower multiple times over several years, and partition their resources between reproduction and persistence. To which ex…

van Treuren, R., R. Hoekstra, R. Wehrens, and T. van Hintum. 2020. Effects of climate change on the distribution of crop wild relatives in the Netherlands in relation to conservation status and ecotope variation. Global Ecology and Conservation 23: e01054. https://doi.org/10.1016/j.gecco.2020.e01054

Crop wild relatives (CWR) are wild plant taxa that are genetically related to a cultivated species and are considered rich sources of useful traits for crop improvement. CWR are generally underrepresented in genebanks, while their survival in nature is not guaranteed. Inventories and risk analyses a…

Goodwin, Z. A., P. Muñoz-Rodríguez, D. J. Harris, T. Wells, J. R. I. Wood, D. Filer, and R. W. Scotland. 2020. How long does it take to discover a species? Systematics and Biodiversity 18: 784–793. https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Peyre, G., J. Lenoir, D. N. Karger, M. Gomez, A. Gonzalez, O. Broennimann, and A. Guisan. 2020. The fate of páramo plant assemblages in the sky islands of the northern Andes B. Jiménez‐Alfaro [ed.],. Journal of Vegetation Science 31: 967–980. https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Xue, L., L. Jia, G. Nam, Y. Huang, S. Zhang, Y. Wang, Z. Zhou, and Y. Chen. 2020. Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia. Plant Diversity 42: 155–167. https://doi.org/10.1016/j.pld.2020.01.001

East Asia has long been recognized as a major center for temperate woody plants diversity. Although several theories have been proposed to explain how the diversity of these temperate elements accumulated in the region, the specific process remains unclear. Here we describe six species of Carpinus, …

Kovalchuk, I., M. Pellino, P. Rigault, R. van Velzen, J. Ebersbach, J. R. Ashnest, M. Mau, et al. 2020. The Genomics ofCannabisand Its Close Relatives. Annual Review of Plant Biology 71: 713–739. https://doi.org/10.1146/annurev-arplant-081519-040203

Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social int…

Li, M., J. He, Z. Zhao, R. Lyu, M. Yao, J. Cheng, and L. Xie. 2020. Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ 8: e8729. https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…