Wissenschaft ermöglicht durch Exemplardaten

Klages, J. P., Salzmann, U., Bickert, T., Hillenbrand, C.-D., Gohl, K., … Dziadek, R. (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature, 580(7801), 81–86. doi:10.1038/s41586-020-2148-5 https://doi.org/10.1038/s41586-020-2148-5

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years1,2,3,4,5, driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume6. In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether p…

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

De Siracusa, P. C., Gadelha, L. M. R., & Ziviani, A. (2020). New perspectives on analysing data from biological collections based on social network analytics. Scientific Reports, 10(1). doi:10.1038/s41598-020-60134-y https://doi.org/10.1038/s41598-020-60134-y

Biological collections have been historically regarded as fundamental sources of scientific information on biodiversity. They are commonly associated with a variety of biases, which must be characterized and mitigated before data can be consumed. In this work, we are motivated by taxonomic and colle…

Cámara-Leret, R., Raes, N., Roehrdanz, P., De Fretes, Y., Heatubun, C. D., Roeble, L., … Hannah, L. (2019). Climate change threatens New Guinea’s biocultural heritage. Science Advances, 5(11), eaaz1455. doi:10.1126/sciadv.aaz1455 https://doi.org/10.1126/sciadv.aaz1455

New Guinea is the most biologically and linguistically diverse tropical island on Earth, yet the potential impacts of climate change on its biocultural heritage remain unknown. Analyzing 2353 endemic plant species distributions, we find that 63% of species are expected to have smaller geographic ran…

Mezghani, N., Khoury, C. K., Carver, D., Achicanoy, H. A., Simon, P., Flores, F. M., & Spooner, D. (2019). Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 0(0), 0. doi:10.2135/cropsci2019.05.0333 https://doi.org/10.2135/cropsci2019.05.0333

Crop wild relatives, the wild progenitors and closely related cousins of cultivated plant species, are sources of valuable genetic resources for crop improvement. Persisting gaps in knowledge of taxonomy, distributions, and characterization for traits of interest constrain their expanded use in plan…

Marconi, L., & Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment, 287, 106664. doi:10.1016/j.agee.2019.106664 https://doi.org/10.1016/j.agee.2019.106664

In addition to their potential against deforestation and climate change, agroforestry systems may have a relevant role in biodiversity conservation. In this sense, not only species richness per se, but also community composition, including the distribution range of the species, should be considered.…

Nevado, B., Wong, E. L. Y., Osborne, O. G., & Filatov, D. A. (2019). Adaptive Evolution Is Common in Rapid Evolutionary Radiations. Current Biology. doi:10.1016/j.cub.2019.07.059 https://doi.org/10.1016/j.cub.2019.07.059

One of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountai…

Karger, D. N., Kessler, M., Conrad, O., Weigelt, P., Kreft, H., König, C., & Zimmermann, N. E. (2019). Why tree lines are lower on islands-Climatic and biogeographic effects hold the answer. Global Ecology and Biogeography. doi:10.1111/geb.12897 https://doi.org/10.1111/geb.12897

Aim: To determine the global position of tree line isotherms, compare it with observed local tree limits on islands and mainlands, and disentangle the potential drivers of a difference between tree line and local tree limit. Location: Global. Time period: 1979–2013. Major taxa studied: Trees. Method…

Sheppard, C. S., & Schurr, F. M. (2018). Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. doi:10.1111/geb.12844 https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

Peterson, A. T., Asase, A., Canhos, D., de Souza, S., & Wieczorek, J. (2018). Data Leakage and Loss in Biodiversity Informatics. Biodiversity Data Journal, 6. doi:10.3897/bdj.6.e26826 https://doi.org/10.3897/bdj.6.e26826

The field of biodiversity informatics is in a massive, “grow-out” phase of creating and enabling large-scale biodiversity data resources. Because perhaps 90% of existing biodiversity data nonetheless remains unavailable for science and policy applications, the question arises as to how these existin…