Wissenschaft ermöglicht durch Exemplardaten

Tackett, M., C. Berg, T. Simmonds, O. Lopez, J. Brown, R. Ruggiero, and J. Weber. 2022. Breeding system and geospatial variation shape the population genetics of Triodanis perfoliata. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9382

Both intrinsic and extrinsic forces work together to shape connectivity and genetic variation in populations across the landscape. Here we explored how geography, breeding system traits, and environmental factors influence the population genetic patterns of Triodanis perfoliata, a widespread mix‐mating annual plant in the contiguous US. By integrating population genomic data with spatial analyses and modeling the relationship between a breeding system and genetic diversity, we illustrate the complex ways in which these forces shape genetic variation. Specifically, we used 4705 single nucleotide polymorphisms to assess genetic diversity, structure, and evolutionary history among 18 populations. Populations with more obligately selfing flowers harbored less genetic diversity (π: R2 = .63, p = .01, n = 9 populations), and we found significant population structuring (FST = 0.48). Both geographic isolation and environmental factors played significant roles in predicting the observed genetic diversity: we found that corridors of suitable environments appear to facilitate gene flow between populations, and that environmental resistance is correlated with increased genetic distance between populations. Last, we integrated our genetic results with species distribution modeling to assess likely patterns of connectivity among our study populations. Our landscape and evolutionary genetic results suggest that T. perfoliata experienced a complex demographic and evolutionary history, particularly in the center of its distribution. As such, there is no singular mechanism driving this species' evolution. Together, our analyses support the hypothesis that the breeding system, geography, and environmental variables shape the patterns of diversity and connectivity of T. perfoliata in the US.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.

Belitz, M. W., V. Barve, J. R. Doby, M. M. Hantak, E. A. Larsen, D. Li, J. A. Oswald, et al. 2021. Climate drivers of adult insect activity are conditioned by life history traits C. Scherber [ed.],. Ecology Letters 24: 2687–2699. https://doi.org/10.1111/ele.13889

Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

Cardador, L., P. Abellán, and T. M. Blackburn. 2021. Incorporating phylogeographic information in alien bird distribution models increases geographic extent but not accuracy of predictions. Biological Invasions 24: 683–695. https://doi.org/10.1007/s10530-021-02673-7

Species distribution models (SDM) have been proposed as valuable first screening tools for predicting species responses to new environmental conditions. SDMs are usually conducted at the species level, assuming that species-environment relationships are a species-specific feature that do not evolve …

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …

Yi, S., C.-P. Jun, K. Jo, H. Lee, M.-S. Kim, S. D. Lee, X. Cao, and J. Lim. 2020. Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports 10. https://doi.org/10.1038/s41598-020-74994-x


Cooper, N., A. L. Bond, J. L. Davis, R. Portela Miguez, L. Tomsett, and K. M. Helgen. 2019. Sex biases in bird and mammal natural history collections. Proceedings of the Royal Society B: Biological Sciences 286: 20192025. https://doi.org/10.1098/rspb.2019.2025

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representativ…

Li, X., B. Li, G. Wang, X. Zhan, and M. Holyoak. 2020. Deeply digging the interaction effect in multiple linear regressions using a fractional-power interaction term. MethodsX 7: 101067. https://doi.org/10.1016/j.mex.2020.101067

In multiple regression Y ~ β0 + β1X1 + β2X2 + β3X1 X2 + ɛ., the interaction term is quantified as the product of X1 and X2. We developed fractional-power interaction regression (FPIR), using βX1M X2N as the interaction term. The rationale of FPIR is that the slopes of Y-X1 regression along the X2 gr…