Wissenschaft ermöglicht durch Exemplardaten

Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668. https://doi.org/10.1016/j.ecoinf.2022.101668

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985. https://doi.org/10.1016/j.palaeo.2022.110985

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Pant, V., C. Patwardhan, K. Patil, A. R. Bhowmick, A. Mukherjee, and A. K. Banerjee. 2021. ILORA: A database of alien vascular flora of India. Ecological Solutions and Evidence 2. https://doi.org/10.1002/2688-8319.12105

Biological invasions pose an unprecedented threat to biodiversity and ecosystems at different spatial scales, especially for a biodiversity‐rich developing nation like India. While country‐level checklists of alien taxa are important, databases having their biological and ecological attributes are of paramount importance for facilitating research activities and developing policy interventions. Such a comprehensive database for alien flora is lacking in India.We have curated data for 14 variables related to ecology, biogeography, introduction pathway, socio‐economy and distribution of 1747 alien vascular plant species from 22 national and global sources to produce the Indian Alien Flora Information (ILORA) version 1.0 database. This paper describes the detailed methodology of curating these data along with the rationale behind selecting these variables.The database, the first of its kind for the Indian alien flora, will provide easy access to high‐quality data and offer a ready reference to comprehend the existing scenario of alien plant species in the country. The database is dynamic and will be updated regularly. It has a provision to incorporate user‐submitted data, which will allow increasing the resolution of the database as well as the expansion of its capacity.The database is envisaged to become a nationwide collaborative platform for a wide spectrum of stakeholders. It is freely accessible via an online data repository as well as through a dedicated website (https://ilora2020.wixsite.com/ilora2020).

Joshi, M. D., and C. Joshi. 2022. Areas of species diversity and endemicity of Nepal. Ecosphere 13. https://doi.org/10.1002/ecs2.3969

In this study, we analyzed the distribution and the spatial pattern of species diversity of vascular plants in Nepal. The aim was to identify and evaluate the occurrence and status of species‐rich areas in Nepal using ecological and environmental drivers. We used 52,973 georeferenced herbarium specimen records, representing 2650 species collected from Nepal. Altogether, 41 environmental variables were used for model development and validation. We used MaxEnt to predict the distribution pattern. All the significant species distribution predictions were then used to develop a species richness and endemism pattern in Nepal. The High Mountain and Himalaya, particularly east and central Nepal, were found to be species diverse and endemically rich areas, whereas western Nepal had lower species richness. We observed that isothermality, slope, rugosity, potential evapotranspiration, precipitation of humid months, temperature annual range, mean diurnal range, and normalized difference in vegetation index of humid months were the most influential environmental and climatic variables. We observed that about 60% of the areas, which had highest richness and endemism values, are still not included in protected areas in Nepal. We quantitatively analyzed the species richness and endemicity patterns of Nepal and were able to identify 19 areas of high species diversity and endemicity, six of which are newly identified.

Freitas, C., F. T. Brum, C. Cássia-Silva, L. Maracahipes, M. B. Carlucci, R. G. Collevatti, and C. D. Bacon. 2021. Incongruent Spatial Distribution of Taxonomic, Phylogenetic, and Functional Diversity in Neotropical Cocosoid Palms. Frontiers in Forests and Global Change 4. https://doi.org/10.3389/ffgc.2021.739468

Biodiversity can be quantified by taxonomic, phylogenetic, and functional diversity. Current evidence points to a lack of congruence between the spatial distribution of these facets due to evolutionary and ecological constraints. A lack of congruence is especially evident between phylogenetic and ta…

Montagnani, C., G. Casazza, R. Gentili, S. Caronni, and S. Citterio. 2022. Kudzu in Europe: niche conservatism for a highly invasive plant. Biological Invasions 24: 1017–1032. https://doi.org/10.1007/s10530-021-02706-1

Niche dynamics represent an important element in predicting potential invasion areas of alien species and their impacts as well as in understanding mechanisms underlying invasion success. Pueraria lobata, commonly named “kudzu”, is an Asian vine and one of the 100 worst invasive species in the world…

Zhang, N., Z. Liao, S. Wu, M. P. Nobis, J. Wang, and N. Wu. 2021. Impact of climate change on wheat security through an alternate host of stripe rust. Food and Energy Security 11. https://doi.org/10.1002/fes3.356

In the 21st century, stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is still the most devastating disease of wheat globally. Despite the critical roles of the alternate host plants, the Berberis species, in the sexual reproduction and spread of Pst, the climate change impacts on t…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Miller, E. F., R. E. Green, A. Balmford, P. Maisano Delser, R. Beyer, M. Somveille, M. Leonardi, et al. 2021. Bayesian Skyline Plots disagree with range size changes based on Species Distribution Models for Holarctic birds. Molecular Ecology 30: 3993–4004. https://doi.org/10.1111/mec.16032

During the Quaternary, large climate oscillations impacted the distribution and demography of species globally. Two approaches have played a major role in reconstructing changes through time: Bayesian Skyline Plots (BSPs), which reconstruct population fluctuations based on genetic data, and Species …

Aidoo, O. F., S. Cunze, R. A. Guimapi, L. Arhin, F. K. Ablormeti, E. Tettey, F. Dampare, et al. 2021. Lethal yellowing disease: insights from predicting potential distribution under different climate change scenarios. Journal of Plant Diseases and Protection 128: 1313–1325. https://doi.org/10.1007/s41348-021-00488-1

Coconut is recognized for its popularity in contributing to food and nutritional security. It generates income and helps to improve rural livelihood. However, these benefits are constrained by lethal yellowing disease (LYD). A clear understanding of climate suitable areas for disease invasion is ess…