Wissenschaft ermöglicht durch Exemplardaten

Pilliod, D. S., M. I. Jeffries, R. S. Arkle, and D. H. Olson. 2024. Climate Futures for Lizards and Snakes in Western North America May Result in New Species Management Issues. Ecology and Evolution 14. https://doi.org/10.1002/ece3.70379

We assessed changes in fundamental climate‐niche space for lizard and snake species in western North America under modeled climate scenarios to inform natural resource managers of possible shifts in species distributions. We generated eight distribution models for each of 130 snake and lizard species in western North America under six time‐by‐climate scenarios. We combined the highest‐performing models per species into a single ensemble model for each scenario. Maps were generated from the ensemble models to depict climate‐niche space for each species and scenario. Patterns of species richness based on climate suitability and niche shifts were calculated from the projections at the scale of the entire study area and individual states and provinces, from Canada to Mexico. Squamate species' climate‐niche space for the recent‐time climate scenario and published known ranges were highly correlated (r = 0.81). Overall, reptile climate‐niche space was projected to move northward in the future. Sixty‐eight percent of species were projected to expand their current climate‐niche space rather than to shift, contract, or remain stable. Only 8.5% of species were projected to lose climate‐niche space in the future, and these species primarily occurred in Mexico and the southwestern U.S. We found few species were projected to lose all suitable climate‐niche space at the state or province level, although species were often predicted to occupy novel areas, such as at higher elevations. Most squamate species were projected to increase their climate‐niche space in future climate scenarios. As climate niches move northward, species are predicted to cross administrative borders, resulting in novel conservation issues for local landowners and natural resource agencies. However, information on species dispersal abilities, landscape connectivity, biophysical tolerances, and habitat suitability is needed to contextualize predictions relative to realized future niche expansions.

Escalante, T., M. Farfán, O. Campos, L. M. Ochoa-Ochoa, K. Flores-Quintal, D. R. García-Vélez, A. L. Medina-Bárcenas, and F. Saenz. 2024. Knowledge shortfalls and the effect of wildfires on biodiversity conservation in Guanajuato, Mexico. Revista Mexicana de Biodiversidad 95: e955323. https://doi.org/10.22201/ib.20078706e.2024.95.5323

Knowledge of shortfalls could modify the geographic distribution patterns and limit the actions to conserve the biodiversity, even in the taxa best known. In addition, forest fires also could modify those patterns, but the potential effects of both factors have not been tested. Our aim was to analyze the effect of the Linnean and Wallacean shortfalls in the first evaluation of wildfire impacts on 22 amphibian and 13 mammal species distributed in Guanajuato, Mexico. We evaluated those shortfalls using the non-parametric estimator Chao2 and the Qs estimator and through maps of species richness patterns. To evaluate the effects of wildfires, we produced a fire recurrence map and quantified the burned area within species distributions and in 24 Protected Natural Areas (PNA) in the state. The Linnean shortfall showed some species missing to record in Guanajuato for both taxa, while the Wallacean shortfall showed poor quality of knowledge. Fire recurrence was high within 5 PNA. The richness patterns affected by fires covered nearly 17% of the surface of Guanajuato. Improving the knowledge of biogeographical patterns could provide better tools to stakeholders to decrease the negative impact of fires within PNA.

Clancy, N. G., J. A. McFarland, M. G. Ahern, and A. W. Walters. 2024. Functional turnover in a prairie river fish community over 130 years. Transactions of the American Fisheries Society 153: 525–540. https://doi.org/10.1002/tafs.10479

Objective In many Great Plains rivers, functional turnover—the change in proportional dominance of members in biological communities that fill certain ecological roles—has occurred due to impoundment and habitat alteration. The Powder River of Montana and Wyoming remains one of the few unregulated prairie rivers, but long‐term monitoring is limited, so we analyzed changes over time at the functional, assemblage, and species levels.MethodsWe used fish sampling data from 43 different sources collected from 1893 to 2022 to analyze trends in fish communities.ResultAcross the main‐stem Powder River, Sand Shiner Miniellus stramineus and Channel Catfish Ictalurus punctatus substantially increased in abundance, whereas Sturgeon Chub Macrhybopsis gelida decreased. While most other species did not show significant changes in relative abundance (although the always rare Lake Chub Couesius plumbeus may have been extirpated), significant functional turnover occurred in the upper river due to increases in generalist feeders, predators, omnivores, and cavity‐guarding species, with declines in benthic feeders, invertivores, and pelagic broadcast spawners, among others. Community and functional changes were more substantial in the upper river than in the lower river, possibly due to augmented streamflow from a major tributary.ConclusionFunctional turnover within the upper river was substantial despite the relative stability of most individual species, even when the Sand Shiner—the most significantly increasing species—was excluded from analysis. This suggests small but consistent increases and decreases within functional groups, which cumulatively are likely impacting the ecosystem. We hypothesize a complex set of mechanisms causing these changes that offer avenues for future work. The collation of data from disparate studies and the resampling of even a limited number of historical fish collection locations can greatly aid in identifying potential fish community changes in systems where monitoring is limited.

López-Reyes, K., C. Yáñez-Arenas, and F. Villalobos. 2024. Exploring the causes underlying the latitudinal variation in range sizes: Evidence for Rapoport’s rule in spiny lizards (genus Sceloporus) B. K. Acharya [ed.],. PLOS ONE 19: e0306832. https://doi.org/10.1371/journal.pone.0306832

Species’ range size is a fundamental unit of analysis in biodiversity research, given its association with extinction risk and species richness. One of its most notable patterns is its positive relationship with latitude, which has been considered an ecogeographical rule called Rapoport’s rule. Despite this rule being confirmed for various taxonomic groups, its validity has been widely discussed and several taxa still lack a formal assessment. Different hypotheses have been proposed to explain their potential mechanisms, with those related to temperature and elevational being the most supported thus far. In this study, we employed two level of analyses (cross-species and assemblage) to investigate the validity of Rapoport’s rule in spiny lizards (genus Sceloporus). Additionally, we evaluated four environmental-related hypotheses (minimum temperature, temperature variability, temperature stability since the last glacial maximum, and elevation) posed to explain such pattern, contrasting our results to those patterns expected under a null model of range position. Our results provided support for Rapoport’s rule at both levels of analyses, contrasting with null expectations. Consistently, minimum temperature and elevation were the most relevant variables explaining the spatial variation in range size. At the cross-species level, our null simulations revealed that both variables deviated significantly from random expectations. Conversely, at the assemblage level, none of the variables were statistically different from the expected relationships. We discussed the implication of our findings in relation to the ecology and evolution of spiny lizards.

Owen, E., M. Zuliani, M. Goldgisser, and C. Lortie. 2024. The importance of native shrubs on the distribution and diversity of reptiles and amphibians in the central drylands of Southwestern USA. Biodiversity and Conservation 33: 2131–2151. https://doi.org/10.1007/s10531-024-02851-8

Conservation and management of drylands is a global challenge. Key attributes of these ecosystems, such as dominant vegetation including shrubs, can provide a crucial mechanism to inform conservation strategies. The shrub species Ephedra californica and Larrea tridentata are common native shrub species within the deserts of California and frequently benefit other plant and animal species. Here, we tested the hypothesis that shrubs support reptile and amphibian communities through relative increases in available habitat, estimated through increasing shrub densities at the site level. Reported occurrence data from the Global Biodiversity Information Facility (GBIF) and high-resolution satellite images were used to test for local-to-regional patterns in reptile and amphibian distribution and diversity by shrub densities at sites. At 43 distinct sites, the relationship between shrub density and reported reptile and amphibian communities was also tested. A total of 71 reptile and amphibian species were reported regionally. Increases in shrub density across sites positively influenced the relative abundance and richness of reptiles and amphibians observed. Moreover, increasing shrub density also had a positive influence on species evenness. Aridity differences between sites did not significantly influence the relationship between shrub density and reptiles and amphibians suggesting that the relationship was robust. This study highlights the importance of foundational shrub species in supporting reptile and amphibian communities in arid and semi-arid regions. Large-scale patterns of biodiversity in deserts can be supported by positive plant-animal interactions including small islands of fertility and resources for animals in the context of a warming climate.

Elkins, L. C., M. R. Acre, M. G. Bean, S. M. Robertson, R. Smith, and J. S. Perkin. 2024. A multiscale perspective for improving conservation of Conchos pupfish. Animal Conservation. https://doi.org/10.1111/acv.12930

Desert spring systems of the American southwest hold high local fish endemism and are ranked among the most threatened ecosystems in the world. The prioritization of conservation resources to protect species living within these arid landscapes requires knowledge of species abundance and distribution. The plight of Conchos pupfish (Cyprinodon eximius) is representative of freshwater fishes the world over, including population extirpations caused by human poisoning of streams and reservoir construction, to the extent that the species was once considered extinct in the USA. We developed a distance‐sampling framework to monitor Conchos pupfish abundance and coupled this approach with species distribution modeling to guide conservation actions. Our multiscale approach included surveying abundances within 5‐m transects at three reaches of the Devils River, where the last known USA populations persist. We combined this fine‐scale analysis with species distribution modeling for stream segments across the range of the species in Mexico and USA. Modeling revealed Conchos pupfish abundance among transects was negatively correlated with current velocity and detection was negatively correlated with water depth. Estimated abundance at a reach where the species was previously reintroduced was greater than other reaches combined in November 2019, lowest in March 2021 when reach water levels were very low, then equivalent with other reaches by October 2021 after water returned to the reach. Modeled Conchos pupfish distribution illustrated a high probability of occurrence on the periphery of the species' overall range within Texas, USA and broadly across Chihuahua, Mexico, where proposed protected areas might benefit the species. Our study provides conservation guidance by establishing (1) baseline and trajectory values for abundance, (2) transect locations where abundances might be managed within existing protected areas, (3) reaches where high abundances could be used for future repatriation, and (4) stream segments where future surveys might be conducted to assess conservation opportunities.

Scarpetta, S. G. 2024. A Palaeogene stem crotaphytid ( Aciprion formosum ) and the phylogenetic affinities of early fossil pleurodontan iguanians. Royal Society Open Science 11. https://doi.org/10.1098/rsos.221139

Pleurodonta is an ancient, diverse clade of iguanian lizard distributed primarily in the Western Hemisphere. Although the clade is a frequent subject of systematic research, phylogenetic resolution among the major pleurodontan clades is elusive. That uncertainty has complicated the interpretations of many fossil pleurodontans. I describe a fossil skull of a pleurodontan lizard from the Palaeogene of Wyoming that was previously allocated to the puzzling taxon Aciprion formosum , and provide an updated morphological matrix for iguanian lizards. Phylogenetic analyses using Bayesian inference demonstrate that the fossil skull is the oldest and first definitive stem member of Crotaphytidae (collared and leopard lizards), establishing the presence of that clade in North America during the Palaeogene. I also discuss new or revised hypotheses for the relationships of several early pleurodontans. In particular, I examine potential evidence for crown-Pleurodonta in the Cretaceous of Mongolia ( Polrussia ), stem Pleurodonta in the Cretaceous of North America ( Magnuviator ) and a stem anole in the Eocene of North America ( Afairiguana ). I suggest that the placement of the fossil crotaphytid is stable to the uncertain phylogeny of Pleurodonta, but recognize the dynamic nature of fossil diagnosis and the potential for updated systematic hypotheses for the other fossils analysed here.

Mu, C., and P. Li. 2023. Assessing the invasion risk of Chelydra serpentina in China under current and future climate change scenarios. Frontiers in Ecology and Evolution 11. https://doi.org/10.3389/fevo.2023.1277058

Chelydra serpentina, a species introduced to China for aquaculture purposes, is commonly found in its natural habitats within the country. The invasion of C. serpentina poses potential threats to both the biodiversity of China and human health. The potential distribution of C. serpentina has been simulated using the species distribution model – MaxEnt, incorporating global distribution data, climate, and land cover variables. Our simulations encompasses both current conditions and four future climate change scenarios. Currently, the potential distribution is concentrated in central, eastern, and southeastern regions of China, with the central and eastern regions facing the highest risk of invasion. Under future climate change scenarios, the distribution area may expand by 30–90%, and multiple provinces will face a more severe threat of invasion. This study presents the inaugural simulation of the potential invasion range of C. serpentina under current climatic conditions. Moreover, it reveals that climate change is likely to contribute to the expansion of its invasive range, thus furnishing a reference foundation for scientific prevention and control measures. We propose integrating citizen science and eDNA technologies into species monitoring to enhance the efficiency of detecting invasive species. This research has filled the gap in the research on the invasive distribution range of C. serpentina in China and globally, while also providing novel perspectives on the invasion control of this species.

Lin, Z., Y. Hong, S. Chen, Q. Zhang, L. Han, W. Tu, Y. Du, et al. 2023. Emerging non-native amphibians require immediate prevention management in a megacity of South China. BioInvasions Records 12: 731–744. https://doi.org/10.3391/bir.2023.12.3.09

Biological invasion is one serious threat to global biodiversity, economics and sustainability. Under the era of globalization, emerging non-native species are still accelerating at an unprecedented rate. Identifying new field records of non-native species at early stages is critically important to develop effective prevention and management schemes. Here, we conducted field surveys and applied genetic analysis to identify new recordings of non-native amphibians in Shenzhen (a megacity of South China with enormous trade volume). We recorded a total of three non-native amphibians (Ceratophrys ornata, Hoplobatrachus rugulosus and Eleutherodactylus planirostris) in the field with two having establishment evidence (H. rugulosus and E. planirostris). Further ecological niche modeling based on climatic and habitat variables also detected a high habitat suitability of the two species with field establishment evidence and a low habitat suitability for the other three species (C. ornata, Rana catesbeiana and Xenopus laevis) lacking establishment evidence or field observation with only records in the market and database. We recommend more systematic surveys covering wider areas to investigate the establishment of non-native amphibians to stop their further invasions in China.

Long, J. M., and L. Seguy. 2023. Global Status of Non-Native Largemouth Bass (Micropterus Salmoides, Centrachidae) and Smallmouth Bass (Micropterus Dolomieu, Centrarchidae): Disparate Views as Beloved Sportfish and Feared Invader. Reviews in Fisheries Science & Aquaculture: 1–18. https://doi.org/10.1080/23308249.2023.2244078

Largemouth Bass (Micropterus salmoides, LMB) and Smallmouth Bass (Micropterus dolomieu, SMB) are among the most highly invasive species across the globe, but are simultaneously among the most highly sought-after game fish. To explain these disparate views, data on invasive status and angling participation of these two species were compiled at the country level. Largemouth Bass were found established in 62 countries on five continents, whereas SMB were found established in only nine countries on the same five continents. Invasive risk assessments were disparate between the species, with more for SMB (N = 29) than LMB (N = 27). In every instance save one (Finland), SMB were considered “invasive” compared to LMB, which were “invasive” in only 74% of assessments. Twenty-eight countries with non-native black bass have groups that participate in high-profile fishing tournament such the Black Bass World Championship, BASS (Bass Anglers Sportsmans Society) Nation, and Major League Fishing. Most countries with fishing tournaments occur in countries with established LMB populations than in countries with established SMB populations, suggesting a greater economic importance on LMB fishing. The struggle between conserving biodiversity and relying upon economic benefits from fishing for introduced species is a wicked problem likely to continue into the future.