Wissenschaft ermöglicht durch Exemplardaten

Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614

The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.

Hämälä, T., C. Moore, L. Cowan, M. Carlile, D. Gopaulchan, M. K. Brandrud, S. Birkeland, et al. 2024. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nature Communications 15. https://doi.org/10.1038/s41467-024-49679-y

Polyploidy, the result of whole-genome duplication (WGD), is a major driver of eukaryote evolution. Yet WGDs are hugely disruptive mutations, and we still lack a clear understanding of their fitness consequences. Here, we study whether WGDs result in greater diversity of genomic structural variants (SVs) and how they influence evolutionary dynamics in a plant genus, Cochlearia (Brassicaceae). By using long-read sequencing and a graph-based pangenome, we find both negative and positive interactions between WGDs and SVs. Masking of recessive mutations due to WGDs leads to a progressive accumulation of deleterious SVs across four ploidal levels (from diploids to octoploids), likely reducing the adaptive potential of polyploid populations. However, we also discover putative benefits arising from SV accumulation, as more ploidy-specific SVs harbor signals of local adaptation in polyploids than in diploids. Together, our results suggest that SVs play diverse and contrasting roles in the evolutionary trajectories of young polyploids. Cochlearia is an evolutionarily dynamic genus with different base chromosome numbers and ploidal levels. Here, the authors construct a graph-based pangenome for Cochlearia and reveal that whole-genome duplication associated with greater diversity of genomic structural variation and their possible function in adaptation.

Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332

Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.

Goldsmit, J., C. W. McKindsey, R. W. Schlegel, D. Deslauriers, and K. L. Howland. 2024. Predicted shifts in suitable habitat of interacting benthic species in a warmer and invaded Canadian Arctic. Elem Sci Anth 12. https://doi.org/10.1525/elementa.2023.00018

Climate change and related expanding shipping activity are predicted to increase the risk of aquatic invasive species arriving in the Arctic. The goal of this study was to predict the distribution of an interconnected set of native and non-native primary producers and primary and secondary consumers in this changing context. Groups of species were selected to represent a benthic coastal Arctic food web in Hudson Bay, including kelps and eelgrass as primary producers (Alaria esculenta, Agarum clathratum, Saccharina latissima, Laminaria solidungula, and Zostera marina), amphipods as primary consumers (Gammarus oceanicus and G. setosus), and fish as secondary consumers (sculpins Gymnacanthus tricuspis, Myoxocephalus scorpius, M. scorpioides, and M. quadricornis). Ensemble models were used to predict the distribution of these native and several analogue non-native species (species known to be invasive elsewhere that can be considered analogues to Hudson Bay species): Dumontia contorta, Undaria pinnatifida, Sargassum muticum, and Codium fragile (primary producers); Gammarus tigrinus (primary consumer); and Artediellus atlanticus and A. uncinatus (secondary consumers). Predicted habitat suitability of trophic groups and analogue non-native species were overlaid under current and future climate change scenarios to assess areas of change through time. The predicted direction of potential distribution shifts varies by species identity (species composition) but not trophic group. Overall trophic relationships and roles in the ecosystem are likely to be maintained over time because while some species are predicted to decrease their potential ranges (e.g., M. quadricornis), others in the same trophic groups are predicted to increase (e.g., M. scorpius). Overlap (or lack thereof) between native and analogue non-native species pairs are expected to vary through time enabling novel interactions (e.g., competition) in space and time. This approach will help to identify current and future high-risk areas for trophic level changes and interactions with invasive species in response to global warming.

Cousins-Westerberg, R., N. Dakin, L. Schat, G. Kadereit, and A. M. Humphreys. 2023. Evolution of cold tolerance in the highly stress-tolerant samphires and relatives (Salicornieae: Amaranthaceae). Botanical Journal of the Linnean Society. https://doi.org/10.1093/botlinnean/boad009

Low temperature constitutes one of the main barriers to plant distributions, confining many clades to their ancestrally tropical biome. However, recent evidence suggests that transitions from tropical to temperate biomes may be more frequent than previously thought. Here, we study the evolution of cold and frost tolerance in the globally distributed and highly stress-tolerant Salicornieae (Salicornioideae, Amaranthaceae s.l.). We first generate a phylogenetic tree comprising almost all known species (85-90%), using newly generated (n = 106) and published nuclear-ribosomal and plastid sequences. Next, we use geographical occurrence data to document in which clades and geographical regions cold-tolerant species occur and reconstruct how cold tolerance evolved. Finally, we test for correlated evolution between frost tolerance and the annual life form. We find that frost tolerance has evolved independently in up to four Northern Hemisphere lineages but that annuals are no more likely to evolve frost tolerance than perennials, indicating the presence of different strategies for adapting to cold environments. Our findings add to mounting evidence for multiple independent out-of-the-tropics transitions among close relatives of flowering plants and raise new questions about the ecological and physiological mechanism(s) of adaptation to low temperatures in Salicornieae.

Wang, Y., J. Wang, T. A. Garran, H. Liu, H. Lin, J. Luo, Q. Yuan, et al. 2023. Genetic diversity and population divergence of Leonurus japonicus and its distribution dynamic changes from the last interglacial to the present in China. BMC Plant Biology 23. https://doi.org/10.1186/s12870-023-04284-x

Background Leonurus japonicus , a significant medicinal plant known for its therapeutic effects on gynecological and cardiovascular diseases, has genetic diversity that forms the basis for germplasm preservation and utilization in medicine. Despite its economic value, limited research has focused on its genetic diversity and divergence. Results The avg. nucleotide diversity of 59 accessions from China were 0.00029 and hotspot regions in petN-psbM and rpl32-trnL (UAG) spacers, which can be used for genotype discrimination. These accessions divided into four clades with significant divergence. The four subclades, which split at approximately 7.36 Ma, were likely influenced by the Hengduan Mountains uplift and global temperature drop. The initial divergence gave rise to Clade D, with a crown age estimated at 4.27 Ma, followed by Clade C, with a crown age estimated at 3.39 Ma. The four clades were not showed a clear spatial distribution. Suitable climatic conditions for the species were identified, including warmest quarter precipitation 433.20 mm ~ 1,524.07 mm, driest month precipitation > 12.06 mm, and coldest month min temp > -4.34 °C. The high suitability distribution showed contraction in LIG to LGM, followed by expansion from LGM to present. The Hengduan Mountains acted as a glacial refuge for the species during climate changes. Conclusions Our findings reflected a clear phylogenetic relationships and divergence within species L. japonicus and the identified hotspot regions could facilitate the genotype discrimination. The divergence time estimation and suitable area simulation revealed evolution dynamics of this species and may propose conservation suggestions and exploitation approaches in the future.

Clemente, K. J. E., and M. S. Thomsen. 2023. High temperature frequently increases facilitation between aquatic foundation species: a global meta‐analysis of interaction experiments between angiosperms, seaweeds, and bivalves. Journal of Ecology. https://doi.org/10.1111/1365-2745.14101

Many studies have quantified ecological impacts of individual foundation species (FS). However, emerging data suggest that FS often co‐occur, potentially inhibiting or facilitating one another, thereby causing indirect, cascading effects on surrounding communities. Furthermore, global warming is accelerating, but little is known about how interactions between co‐occurring FS vary with temperature.Shallow aquatic sedimentary systems are often dominated by three types of FS: slower‐growing clonal angiosperms, faster‐growing solitary seaweeds, and shell‐forming filter‐ and deposit‐feeding bivalves. Here, we tested the impacts of one FS on another by analyzing manipulative interaction experiments from 148 papers with a global meta‐analysis.We calculated 1,942 (non‐independent) Hedges’ g effect sizes, from 11,652 extracted values over performance responses, such as abundances, growths or survival of FS, and their associated standard deviations and replication levels. Standard aggregation procedures generated 511 independent Hedges’ g that was classified into six types of reciprocal impacts between FS.We found that (i) seaweeds had consistent negative impacts on angiosperms across performance responses, organismal sizes, experimental approaches, and ecosystem types; (ii) angiosperms and bivalves generally had positive impacts on each other (e.g., positive effects of angiosperms on bivalves were consistent across organismal sizes and experimental approaches, but angiosperm effect on bivalve growth and bivalve effect on angiosperm abundance were not significant); (iii) bivalves positively affected seaweeds (particularly on growth responses); (iv) there were generally no net effects of seaweeds on bivalves (except for positive effect on growth) or angiosperms on seaweeds (except for positive effect on ‘other processes’); and (v) bivalve interactions with other FS were typically more positive at higher temperatures, but angiosperm‐seaweed interactions were not moderated by temperature.Synthesis: Despite variations in experimental and spatiotemporal conditions, the stronger positive interactions at higher temperatures suggest that facilitation, particularly involving bivalves, may become more important in a future warmer world. Importantly, addressing research gaps, such as the scarcity of FS interaction experiments from tropical and freshwater systems and for less studied species, as well as testing for density‐dependent effects, could better inform aquatic ecosystem conservation and restoration efforts and broaden our knowledge of FS interactions in the Anthropocene.

Huang, T., J. Chen, K. E. Hummer, L. A. Alice, W. Wang, Y. He, S. Yu, et al. 2023. Phylogeny of Rubus (Rosaceae): Integrating molecular and morphological evidence into an infrageneric revision. TAXON. https://doi.org/10.1002/tax.12885

Rubus (Rosaceae), one of the most complicated angiosperm genera, contains about 863 species, and is notorious for its taxonomic difficulty. The most recent (1910–1914) global taxonomic treatment of the genus was conducted by Focke, who defined 12 subgenera. Phylogenetic results over the past 25 years suggest that Focke's subdivisions of Rubus are not monophyletic, and large‐scale taxonomic revisions are necessary. Our objective was to provide a comprehensive phylogenetic analysis of the genus based on an integrative evidence approach. Morphological characters, obtained from our own investigation of living plants and examination of herbarium specimens are combined with chloroplast genomic data. Our dataset comprised 196 accessions representing 145 Rubus species (including cultivars and hybrids) and all of Focke's subgenera, including 60 endemic Chinese species. Maximum likelihood analyses inferred phylogenetic relationships. Our analyses concur with previous molecular studies, but with modifications. Our data strongly support the reclassification of several subgenera within Rubus. Our molecular analyses agree with others that only R. subg. Anoplobatus forms a monophyletic group. Other subgenera are para‐ or polyphyletic. We suggest a revised subgeneric framework to accommodate monophyletic groups. Character evolution is reconstructed, and diagnostic morphological characters for different clades are identified and discussed. Based on morphological and molecular evidence, we propose a new classification system with 10 subgenera: R. subg. Anoplobatus, R. subg. Batothamnus, R. subg. Chamaerubus, R. subg. Cylactis, R. subg. Dalibarda, R. subg. Idaeobatus, R. subg. Lineati, R. subg. Malachobatus, R. subg. Melanobatus, and R. subg. Rubus. The revised infrageneric nomenclature inferred from our analyses is provided along with synonymy and type citations. Our new taxonomic backbone is the first systematic and complete global revision of Rubus since Focke's treatment. It offers new insights into deep phylogenetic relationships of Rubus and has important theoretical and practical significance for the development and utilization of these important agronomic crops.

Hernández, S., A. G. García, F. Arenas, M. P. Escribano, A. Jueterbock, O. De Clerck, C. A. Maggs, et al. 2023. Range‐edge populations of seaweeds show niche unfilling and poor adaptation to increased temperatures. Journal of Biogeography. https://doi.org/10.1111/jbi.14572

(no abstract available)

Kolanowska, M., S. Nowak, and A. Rewicz. 2022. Will Greenland be the last refuge for the continental European small-white orchid?Niche modeling of future distribution of Pseudorchis albida. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.912428

Climate change affects populations of plants, animals, and fungi not only by direct modifications of their climatic niches but also by altering their ecological interactions. In this study, the future distribution of suitable habitats for the small-white orchid (Pseudorchis albida) was predicted using ecological niche modeling. In addition, the effect of global warming on the spatial distribution and availability of the pollen vectors of this species was evaluated. Due to the inconsistency in the taxonomic concepts of Pseudorchis albida, the differences in the climatic preferences of three proposed subspecies were investigated. Due to the overlap of both morphological and ecological characters of ssp. albida and ssp. tricuspis, they are considered to be synonyms, and the final analyses were carried out using ssp. albida s.l. and ssp. straminea. All of the models predict that with global warming, the number of suitable niches for these orchids will increase. This significant increase in preferred habitats is expected to occur in Greenland, but habitat loss in continental Europe will be severe. Within continental Europe, Pseudorchis albida ssp. albida will lose 44%–98% of its suitable niches and P. albida ssp. straminea will lose 46%–91% of its currently available habitats. An opposite effect of global warming was predicted for pollinators of P. albida s.l., and almost all insects studied will be subject to habitat loss. Still, within the predicted potential geographical ranges of the orchid studied, some pollen vectors are expected to occur, and these can support the long-term survival of the small-white orchid.