Wissenschaft ermöglicht durch Exemplardaten
Nuñez Otaño, N. B., E. V. Pérez-Pincheira, V. Coll Moritan, and M. Llorens. 2024. Maastrichtian palaeoenvironments and palaeoclimate reconstruction in southern South America (Patagonia, Argentina) based on fossil fungi and algae using open data resources. Historical Biology: 1–15. https://doi.org/10.1080/08912963.2024.2408804
The use of non-pollen palynomorphs (NPP), particularly fossil fungi and algae, as palaeobiological proxies for Late Cretaceous palaeoenvironmental and palaeoclimatic reconstructions of warm-to-hot greenhouse conditions, can enhance our understanding of climate change impacts on modern Patagonian environments. This study aimed to reconstruct the Maastrichtian palaeoenvironment and palaeoclimate in the Cañadón Asfalto Basin (CAB, Chubut Province) by testing these NPPs as proxies using the Nearest Living Relative method (NLR). Moreover, using modern ecological requirements from open-source databases, such as GBIF and processing it with an open-source, cross-platform tool like QGIS, linked with Köppen-Geiger shapefiles, provided evidence of climate-driven palaeo-distribution patterns of fungal and algal diversity at CAB. Applying modern ecological requirements and biogeographic distribution data, we reconstructed the palaeoclimate as temperate with evenly distributed precipitation and warm summers, corresponding to the Cfb climate zone in Köppen-Geiger classifications. Additionally, our methodology produced reliable results regarding Cenozoic floras’ physiognomies based on fossil fungi, revealing a transition from sparsely wooded areas with palms and prairies to complex forest ecosystems with palms, deciduous trees, and shrubland. Furthermore, testing Cretaceous algae with the NLR method, for the first time, provided comprehensive insights into past water body characteristics, including trophic state and water quality.
Bürger, M., and J. Chory. 2024. A potential role of heat‐moisture couplings in the range expansion of Striga asiatica. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11332
Parasitic weeds in the genera Orobanche, Phelipanche (broomrapes) and Striga (witchweeds) have a devastating impact on food security across much of Africa, Asia and the Mediterranean Basin. Yet, how climatic factors might affect the range expansion of these weeds in the context of global environmental change remains unexplored. We examined satellite‐based environmental variables such as surface temperature, root zone soil moisture, and elevation, in relation to parasitic weed distribution and environmental conditions over time, in combination with observational data from the Global Biodiversity Information Facility (GBIF). Our analysis reveals contrasting environmental and altitude preferences in the genera Striga and Orobanche. Asiatic witchweed (Striga asiatica), which infests corn, rice, sorghum, and sugar cane crops, appears to be expanding its range in high elevation habitats. It also shows a significant association with heat‐moisture coupling events, the frequency of which is rising in such environments. These results point to geographical shifts in distribution and abundance in parasitic weeds due to climate change.
Minghetti, E., P. M. Dellapé, and S. I. Montemayor. 2024. Orsillus depressus (Heteroptera: Lygaeidae), an invasive circum-mediterranean species recently reported from America. Are the endemic and already endangered Cupressaceae trees from the Andean Region facing a new challenge? Biological Invasions. https://doi.org/10.1007/s10530-024-03313-6
Orsillus depressus , a circum-mediterranean species of seed bug that lives on several genera and species of Cupressaceae is considered a pest of these trees, has recently been recorded for the first time in America, in Argentina. As the western records of O. depressus are close to endemic Cupressaceae forests from the Andean Region, our attention is drawn to the possible risk of colonization and establishment of O. depressus on these forests, where three endemic monotipic genera are found: Austrocedrus chilensis , Fitzroya cupressoides and Pilgerodendron uviferum . Maxent Models for present and future scenarios, and Minimum Volume Ellipsoids were used, and natural pathways were explored. Orsillus depressus has shown a high adaptive capacity to environments with different climates, and considering the models predictions, there are large suitable areas for its establishment in southern Argentina and Chile. Also, the climatic space O. depressus occupies is small and in part new, and an expansion should be expected. Moreover, multiple natural pathways were recognized that would allow its ingression in areas highly suitable with endemic Cupressaceae forests.
Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4
Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.
Anon. 2023. Ecological Niche Modelling of an Industrially Important Mushroom - Ganoderma lucidum (Leys.) Karsten: A Machine Learning Global Appraisal. Journal of Scientific & Industrial Research 82. https://doi.org/10.56042/jsir.v82i12.1973
Species Distribution Modelling (SDM) involves utilizing observations of a given species and its surrounding environment to produce a sound approximation of the species' potential distribution. The intricate relationships between organisms and their surroundings, coupled with the profusion of data, have captured the attention of ecologists and statisticians alike. Consequently, they have directed their efforts towards exploring the potential of machine learning techniques. Our study employs an ensemble machine learning approach to simulate the global ecological niche modelling of Ganoderma lucidum fungus. This involves the utilization of various environmental predictors and the averaging of multiple algorithms to achieve a comprehensive analysis. 563 spatially thinned presence points of G. lucidum were projected with three bio-climatic time frames, namely current, 2050, and 2070, and four Representative Concentration Pathways (RCPs), namely 2.6, 4.5, 6.0, and 8.5, as well as non-climatic variables (surface soil features, land use, rooting depth and water storage capacity at rooting zone). We observed excellent model qualities as the Area Under the receiver operating Curve (AUC) approached 0.90. Random Forest was identified as the best individual algorithm, while the Maxent entropy was identified as the least effective for Ecological Niche Modelling (ENM) of G. lucidum. Globally, under the current bio-climatic and non-bioclimatic projection, optimum habitat for this fungus covers 12510876.3 km2 area while, maximum area (13248546.9 Sq. km.) under this habitat class with future projections was recorded with RCP of 8.5 in 2070. The primary determinants of its current global distribution were ecosystem rooting depth, water storage capacity, and precipitation seasonality. While, with two future bioclimatic time frames and RCPs, Isothermality was identified as the most influential predictor. Based on our assessment, it has been determined that this particular fungus is exhibiting a persistent pattern of proliferation across the regions of Europe, America, and certain areas of India. The present investigation sought to underscore the importance of discerning the native habitats of this species, taking into account both current and anticipated climatic shifts. This knowledge is essential for effectively coordinating the artificial cultivation and natural harvesting of G. lucidum, which is necessary to meet the ever-increasing industrial demands.
Silva-Valderrama, I., J.-R. Úrbez-Torres, and T. J. Davies. 2024. From host to host: The taxonomic and geographic expansion of Botryosphaeriaceae. Fungal Biology Reviews 48: 100352. https://doi.org/10.1016/j.fbr.2023.100352
Fungal pathogens are responsible for 30% of emerging infectious diseases (EIDs) in plants. The risk of a pathogen emerging on a new host is strongly tied to its host breadth; however, the determinants of host range are still poorly understood. Here, we explore the factors that shape host breadth of plant pathogens within Botryosphaeriaceae, a fungal family associated with several devastating diseases in economically important crops. While most host plants are associated with just one or a few fungal species, some hosts appear to be susceptible to infection by multiple fungi. However, the variation in the number of fungal taxa recorded across hosts is not easily explained by heritable plant traits. Nevertheless, we reveal strong evolutionary conservatism in host breadth, with most fungi infecting closely related host plants, but with some notable exceptions that seem to have escaped phylogenetic constraints on host range. Recent anthropogenic movement of plants, including widespread planting of crops, has provided new opportunities for pathogen spillover. We suggest that constraints to pathogen distributions will likely be further disrupted by climate change, and we may see future emergence events in regions where hosts are present but current climate is unfavorable.
Schertler, A., B. Lenzner, S. Dullinger, D. Moser, J. L. Bufford, L. Ghelardini, A. Santini, et al. 2023. Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755
AbstractAimSpreading infectious diseases associated with introduced pathogens can have devastating effects on native biota and human livelihoods. We analyse the global distribution of 100 major alien fungal and oomycete pathogens with substantial socio‐economic and environmental impacts and examine their taxonomy, ecological characteristics, temporal accumulation trajectories, regional hot‐ and coldspots of taxon richness and taxon flows between continents.LocationGlobal.TaxonAlien/cryptogenic fungi and fungus‐like oomycetes, pathogenic to plants or animals.MethodsTo identify over/underrepresented classes and phyla, we performed Chi2 tests of independence. To describe spatial patterns, we calculated the region‐wise richness and identified hot‐ and coldspots, defined as residuals after correcting taxon richness for region area and sampling effort via a quasi‐Poisson regression. We examined the relationship with environmental and socio‐economic drivers with a multiple linear regression and evaluated a potential island effect. Regional first records were pooled over 20‐year periods, and for global flows the links between the native range to the alien regions were mapped.ResultsPeronosporomycetes (Oomycota) were overrepresented among taxa and regional taxon richness was positively correlated with area and sampling effort. While no island effect was found, likely due to host limitations, hotspots were correlated with human modification of terrestrial land, per capita gross domestic product, temperate and tropical forest biomes, and orobiomes. Regional first records have increased steeply in recent decades. While Europe and Northern America were major recipients, about half of the taxa originate from Asia.Main ConclusionsWe highlight the putative importance of anthropogenic drivers, such as land use providing a conducive environment, contact opportunities and susceptible hosts, as well as economic wealth likely increasing colonisation pressure. While most taxa were associated with socio‐economic impacts, possibly partly due to a bias in research focus, about a third show substantial impacts to both socio‐economy and the environment, underscoring the importance of maintaining a wholescale perspective across natural and managed systems.
Maurin, O., A. Anest, F. Forest, I. Turner, R. L. Barrett, R. C. Cowan, L. Wang, et al. 2023. Drift in the tropics: Phylogenetics and biogeographical patterns in Combretaceae. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13737
Aim The aim of this study was to further advance our understanding of the species-rich, and ecologically important angiosperm family Combretaceae to provide new insights into their evolutionary history. We assessed phylogenetic relationships in the family using target capture data and produced a dated phylogenetic tree to assess fruit dispersal modes and patterns of distribution. Location Tropical and subtropical regions. Time Period Cretaceous to present. Major Taxa Studied Family Combretaceae is a member of the rosid clade and comprises 10 genera and more than 500 species, predominantly assigned to genera Combretum and Terminalia, and occurring on all continents and in a wide range of ecosystems. Methods We use a target capture approach and the Angiosperms353 universal probes to reconstruct a robust dated phylogenetic tree for the family. This phylogenetic framework, combined with seed dispersal traits, biome data and biogeographic ranges, allows the reconstruction of the biogeographical history of the group. Results Ancestral range reconstructions suggest a Gondwanan origin (Africa/South America), with several intercontinental dispersals within the family and few transitions between biomes. Relative abundance of fruit dispersal types differed by both continent and biome. However, intercontinental colonizations were only significantly enhanced by water dispersal (drift fruit), and there was no evidence that seed dispersal modes influenced biome shifts. Main Conclusions Our analysis reveals a paradox as drift fruit greatly enhanced dispersal distances at intercontinental scale but did not affect the strong biome conservatism observed.
Robin-Champigneul, F., J. Gravendyck, H. Huang, A. Woutersen, D. Pocknall, N. Meijer, G. Dupont-Nivet, et al. 2023. Northward expansion of the southern-temperate podocarp forest during the Early Eocene Climatic Optimum: Palynological evidence from the NE Tibetan Plateau (China). Review of Palaeobotany and Palynology: 104914. https://doi.org/10.1016/j.revpalbo.2023.104914
The debated vegetation response to climate change can be investigated through palynological fossil records from past extreme climate conditions. In this context, the early Eocene (53.3 to 41.2 million years ago (Ma)) is often referred to as a model for a greenhouse Earth. In the Xining Basin, situated on the North-eastern Tibetan Plateau (NETP), this time interval is represented by an extensive and well-dated sedimentary sequence of evaporites and red mudstones. Here we focus on the palynological record of the Early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma) and study the fossil gymnosperm pollen composition in these sediments. In addition, we also investigate the nearest living relatives (NLR) or botanical affinity of these genera and the paleobiogeographic implications of their occurrence in the Eocene of the NETP. To reach our objective, we complemented transmitted light microscopy with laser scanning- and electron microscopy techniques, to produce high-resolution images, and illustrate the morphological variation within fossil and extant gymnosperm pollen. Furthermore, a morphometric analysis was carried out to investigate the infra- and intrageneric variation of these and related taxa. To place the data in context we produced paleobiogeographic maps for Phyllocladidites and for other Podocarpaceae, based on data from a global fossil pollen data base, and compare these with modern records from GBIF. We also assessed the climatic envelope of the NLR. Our analyses confirm the presence of Phyllocladidites (NLR Phyllocladus, Podocarpaceae) and Podocarpidites (NLR Podocarpus, Podocarpaceae) in the EECO deposits in the Xining Basin. In addition, a comparative study based on literature suggests that Parcisporites is likely a younger synonym of Phyllocladidites. Our findings further suggest that the Phyllocladidites specimens are derived from a lineage that was much more diverse than previously thought, and which had a much larger biogeographical distribution during the EECO than at present. Based on the climatic envelope of the NLR, we suggest that the paleoclimatic conditions in the Xining Basin were warmer and more humid during the EECO. We conclude that phylloclade-type conifers typical of the southern-temperate podocarp forests, had a northward geographical expansion during the EECO, followed by extirpation.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.