Wissenschaft ermöglicht durch Exemplardaten

Acarer, A. 2024. Rasprostranjenost smeđeg medvjeda (Ursus arctos L.) u Europi. Šumarski list 148: 261–272. https://doi.org/10.31298/sl.148.5-6.4

Brown bear, described as the largest carnivore in Europe, has a large body. While the brown bear can move safely and comfortably in its own habitat thanks to its large size, it is challenging for them to travel to different habitats over long distances. Therefore, negative changes that may occur with global warming may cause the existing brown bear populations and their habitats to be restricted, reduced, or destroyed. In this study, it was aimed to reveal the effect of Chelsa climate envelope models for current and future years on brown bear habitats in Europe. For this purpose, it was used the MaxEnt method, frequently used in wildlife species distribution modelling. The current habitat suitability model of the brown bear was in the “good model” category with the training data set ROC value of 0.834 and the test data set ROC value of 0.828. The variables contributing to the current model are annual range of temperature (48.2%), mean monthly precipitation amount of the warmest quarter (22.1%), temperature seasonality (18.2%) and annual precipitation amount (11.5%), respectively. When the mapping results used the variables contributed to the brown bear current habitat suitability model are compared with the IUCN inventory results, the current brown bear habitats in Europe will change regionally. However, it has been determined that brown bear habitats will shrink according to the SSP126 Chelsa climate scenario of the year 2100, and these habitats will fragment according to the SSP370 scenario, and that brown bear habitats disappear in some regions in the SSP585 scenario.

Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223. https://doi.org/10.3390/d16040223

Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.

Viljoen, N., J. Weyer, J. Coertse, and W. Markotter. 2023. Evaluation of Taxonomic Characteristics of Matlo and Phala Bat Rabies-Related Lyssaviruses Identified in South Africa. Viruses 15: 2047. https://doi.org/10.3390/v15102047

We report the genetic characterization of two potentially novel rabies-related lyssaviruses identified from bats in Limpopo province, South Africa. Matlo bat lyssavirus (MBLV) was identified in two Miniopterus natalensis (Natal long-fingered) bats in 2015 and 2016, and Phala bat lyssavirus (PBLV) was identified in a Nycticeinops schlieffeni (Schlieffen’s) bat in 2021. The distribution of both of these bat species is largely confined to parts of Africa, with limited reports from the Arabian Peninsula. MBLV and PBLV were demonstrated to group with the unassigned and phylogroup I lyssaviruses, respectively. MBLV was most closely related to Lyssavirus caucasicus (WCBV), whereas PBLV was most closely related to Lyssavirus formosa (TWBLV-1) and Taiwan bat lyssavirus 2 (TWBLV-2), based on analysis of the N and G genes, the concatenated N + P + M + G + L coding sequence, and the complete genome sequence. Based on our analysis, MBLV and WCBV appeared to constitute a phylogroup separate from Lyssavirus lleida (LLEBV) and Lyssavirus ikoma (IKOV). Analysis of the antigenic sites suggests that PBLV will likely be serologically distinguishable from established lyssaviruses in virus-neutralization tests, whereas MBLV appeared to be antigenically highly similar to WCBV. Taken together, the findings suggested that, while PBLV is likely a new lyssavirus species, MBLV is likely related to WCBV.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Ecke, F., B. A. Han, B. Hörnfeldt, H. Khalil, M. Magnusson, N. J. Singh, and R. S. Ostfeld. 2022. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nature Communications 13. https://doi.org/10.1038/s41467-022-35273-7

Population fluctuations are widespread across the animal kingdom, especially in the order Rodentia, which includes many globally important reservoir species for zoonotic pathogens. The implications of these fluctuations for zoonotic spillover remain poorly understood. Here, we report a global empirical analysis of data describing the linkages between habitat use, population fluctuations and zoonotic reservoir status in rodents. Our quantitative synthesis is based on data collated from papers and databases. We show that the magnitude of population fluctuations combined with species’ synanthropy and degree of human exploitation together distinguish most rodent reservoirs at a global scale, a result that was consistent across all pathogen types and pathogen transmission modes. Our spatial analyses identified hotspots of high transmission risk, including regions where reservoir species dominate the rodent community. Beyond rodents, these generalities inform our understanding of how natural and anthropogenic factors interact to increase the risk of zoonotic spillover in a rapidly changing world. Many rodent species are known as hosts of zoonotic pathogens, but the ecological conditions that trigger spillover are not well-understood. Here, the authors show that population fluctuations and association with human-dominated habitats explain the zoonotic reservoir status of rodents globally.

FEOKTISTOVA, N. Yu., I. G. MESCHERSKY, G. I. SHENBROT, A. Yu. PUZACHENKO, S. I. MESCHERSKY, P. L. BOGOMOLOV, and A. V. SUROV. 2022. Phylogeography of the common hamster ( Cricetus cricetus ), paleoclimatic reconstructions of Late Pleistocene colonization. Integrative Zoology. https://doi.org/10.1111/1749-4877.12687

Cricetus cricetus, is one of the most widely distributed species in Eurasia, however its range is becoming fragmented and is now considered critically endangered by IUCN. For the first time we described the phylogeographic structure across the whole range of this species. There are five allopatric phylogroups: “Pannonia”, “North”, “Europe”, “Caucasus”, and the newly identified “Altai”. The last four phylogroups unite into a well‐supported “Europe‐Siberia” superclade separated from “Pannonia” about 100 kyr BP. The modern phylogeographic structure was formed 70‐45 kyr BP. Species distribution modeling with projection to paleoenvironments showed that the range expansion of Cricetus cricetus occurred in the interglacial periods of the Eemian and Holocene. Throughout the Late Pleistocene cold ages, there was a reduction and fragmentation of the range into isolated refugia. Ancestors of recently locally distributed mitochondrial lineages appeared before and during the Last Glacial maximum (LGM) and dispersed till the Atlantic period. These models are to some degree consistent with the analysis of fossil remains. The maximum number of finds occur ∼124, 35, 13, and 5 kyr BP. At the same time, the most significant reduction and/or fragmentation of the range occurred in the interval ∼94‐60 kyr BP. The application of an integrative approach (genetic, species distribution modeling, and paleontology) allows us to conclude that the present time is generally favorable for the species' existence. The observed decrease in its abundance and range fragmentation in natural habitats are clear evidence of the leading role of anthropogenic factors in this process.

Sánchez, C. A., H. Li, K. L. Phelps, C. Zambrana-Torrelio, L.-F. Wang, P. Zhou, Z.-L. Shi, et al. 2022. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nature Communications 13. https://doi.org/10.1038/s41467-022-31860-w

Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351–67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence. Coronaviruses may spill over from bats to humans. This study uses epidemiological data, species distribution models, and probabilistic risk assessment to map overlap among people and SARSr-CoV bat hosts and estimate how many people are infected with bat-origin SARSr-CoVs in Southeast Asia annually.

Dong, F., Q. Zhang, Y. Chen, F. Lei, S. Li, F. Wu, and X. Yang. 2022. Potential millennial‐scale avian declines by humans in southern China. Global Change Biology 28: 5505–5513. https://doi.org/10.1111/gcb.16289

Mounting observational records demonstrate human‐caused faunal decline in recent decades, while accumulating archaeological evidence suggests an early biodiversity impact of human activities during the Holocene. A fundamental question arises concerning whether modern wildlife population declines began during early human disturbance. Here, we performed population genomic analysis of six common forest birds in East Asia to address this question. For five of them, demographic history inference based on 25‐33 genomes of each species revealed dramatic population declines by 4‐48‐fold over millennia (e.g., two to five thousand years ago). Nevertheless, Summary statistics detected nonsignificant correlations between these population size trajectories and Holocene temperature variations, and ecological niche models explicitly predicted extensive range persistence during the Holocene, implying limited demographic consequence of Holocene climate change. Further analyses suggest high negative correlations between the reconstructed population declines and human disturbance intensities and indicate a potential driver of human activities. These findings provide a deep‐time and large‐scale insight into the recently recognized avifaunal decline and support an early origin hypothesis of human effects on biodiversity. Overall, our study sheds light on the current biodiversity crisis in the context of long‐term human‐environment interactions and offers a multievidential framework for quantitatively assessing the ecological consequences of human disturbance.

Ecke, F., M. Magnusson, B. A. Han, and M. Evander. 2022. Orthohantaviruses in the Arctic: Present and Future. Arctic One Health: 393–414. https://doi.org/10.1007/978-3-030-87853-5_18

Orthohantaviruses, family Hantaviridae , are globally distributed except for Antarctica where they are absent. In animals, orthohantaviruses are transmitted horizontally, either directly through aggressive interactions and grooming or by inhaling infectious particles shed from urine, feces, or saliva in the environment. Humans become infected by inhaling aerosols of the virus-contaminated excretions of small mammals. Orthohantaviral infections in humans cause severe hantavirus pulmonary syndrome (HPS) in the North American Artic and hemorrhagic fever with renal syndrome (HFRS) in the Eurasian Arctic. In the Arctic, 16 rodent species (order Rodentia) and five shrew species (order Eulipotyphla) have been identified as reservoirs of orthohantaviruses by RNA detection. The two most important reservoir rodents in the Arctic are the bank vole ( Myodes glareolus ) in Eurasia carrying Puumala orthohantavirus (PUUV) and North American deermouse ( Peromyscus maniculatus ) in the North American Arctic carrying Sin Nombre orthohantavirus (SNV); both rodents being habitat generalists occurring in natural and human-modified habitats. Global warming, either independently or in combination with onshore exploitation of natural resources, is expected to increase the distribution range of reservoirs (including bank vole and North American deermouse, rats ( Rattus rattus and R. norvegicus ), house mouse ( Mus musculus ) and field mice ( Apodemus spp.)), and their associated orthohantaviruses. These changes pose the risk of introducing New World orthohantaviruses (e.g., Jemez Springs virus (JMSV) and SNV) to areas where so far only Old World orthohantaviruses (e.g., Hantaan orthohantavirus (HTNV) and PUUV) occur and vice versa. Climate change in the Arctic will likely also promote transmission and prevalence of orthohantaviruses in their reservoirs and hence increase zoonotic risk. The expected environmental changes call for increased surveillance and preparedness to mitigate potential outbreaks of orthohantavirus diseases in humans.

Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022

Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.