Wissenschaft ermöglicht durch Exemplardaten

Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13628

Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.

Gómez Díaz, J. A., A. Lira-Noriega, and F. Villalobos. 2023. Expanding protected areas in a Neotropical hotspot. International Journal of Sustainable Development & World Ecology: 1–15. https://doi.org/10.1080/13504509.2022.2163717

The region of central Veracruz is considered a biodiversity hotspot due to its high species richness and environmental heterogeneity, but only 2% of this region is currently protected. This study aimed to assess the current protected area system’s effectiveness and to identify priority conservation areas for expanding the existing protected area system. We used the distribution models of 1186 species from three kingdoms (Animalia, Plantae, and Fungi) together with ZONATION software, a conservation planning tool, to determine areas that could help expand the current network of protected areas. We applied three different parametrizations (including only species, using the boundary quality penalty, and using corridor connectivity). We found that protecting an additional 15% of the area would increase, between 16.2% and 19.3%, the protection of the distribution area of all species. We propose that the regions with a consensus of the three parametrizations should be declared as new protected areas to expand 374 km2 to the 216 km2 already protected. Doing so would double the protected surface in central Veracruz. The priority areas identified in this study have more species richness, carbon stock values, natural vegetation cover, and less human impact index than the existing protected areas. If our identified priority areas are declared protected, we could expect a future recovery of endangered species populations for Veracruz. The proposed new protected areas are planned and designed as corridors connecting currently isolated protected areas to promote biodiversity protection.

Baltensperger, A., J. Hagelin, P. Schuette, A. Droghini, and K. Ott. 2022. High dietary and habitat diversity indicate generalist behaviors of northern bog lemmings Synaptomys borealis in Alaska, USA. Endangered Species Research 49: 145–158. https://doi.org/10.3354/esr01211

The northern bog lemming Synaptomys borealis (NBL) is a rare small mammal that is undergoing a federal Species Status Assessment (SSA) under the US Endangered Species Act. Despite a wide North American distribution, very little is known about NBL dietary or habitat needs, both of which are germane to the resiliency of this species to climate change. To quantify diet composition of NBL in Alaska, we used DNA metabarcoding from 59 archived specimens to describe the taxonomic richness and relative abundance of foods in recent diets. DNA analyses revealed a broad diet composed of at least 110 families and 92 genera of bryophytes (mosses and liverworts), graminoids, fungi, forbs, and woody shrubs. Nine bryophyte genera and Carex sedges composed the largest portions of NBL diets. To quantify habitat preference, we intersected 467 georeferenced occurrence records of NBL in Alaska with remotely sensed land cover classes and used a compositional analysis framework that accounts for the relative abundance of land cover types. We did not detect significant habitat preferences for specific land cover types, although NBL frequently occurred in evergreen forest, woody wetlands, and adjacent to water. Our research highlights the importance of bryophytes, among a high diversity of dietary components, and describes NBL as boreal habitat generalists. Results will inform the current federal SSA by quantifying the extent to which ecological constraints are likely to affect NBL in a rapidly changing boreal environment.

Campbell, L. C. E., E. T. Kiers, and G. Chomicki. 2022. The evolution of plant cultivation by ants. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.09.005

Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.

Heo, N., D. J. Leopold, M. V. Lomolino, S. Yun, and D. D. Fernando. 2022. Global and regional drivers of abundance patterns in the hart’s tongue fern complex (Aspleniaceae). Annals of Botany. https://doi.org/10.1093/aob/mcac129

Abstract Background and Aims The hart’s tongue fern (HTF) complex is a monophyletic group composed of five geographically segregated members with divergent abundance patterns across its broad geographic range. We postulated hierarchical systems of environmental controls in which climatic and land-use change drive abundance patterns at the global scale, while various ecological conditions function as finer-scale determinants that further increase geographic disparities at regional to local scales. Methods After quantifying the abundance patterns of the HTF complex, we estimated their correlations with global climate and land-use dynamics. Regional determinants were assessed using boosted regression tree models with 18 potential ecological variables. Moreover, we investigated long-term population trends in the U.S. to understand the interplay of climate change and anthropogenic activities on a temporal scale. Key Results Latitudinal climate shifts drove latitudinal abundance gradients, and regionally different levels of land-use change resulted in global geographic disparities in population abundance. At a regional scale, population isolation, which accounts for rescue effects, played an important role, particularly in Europe and East Asia where several hotspots occurred. Furthermore, the variables most strongly influencing abundance patterns greatly differed by region: precipitation seasonality in Europe, spatial heterogeneity of temperature and precipitation in East Asia, and magnitudes of past climate change, temperature seasonality, and edaphic conditions in North America. In the U.S., protected populations showed increasing trends compared to unprotected populations at the same latitude, highlighting the critical role of habitat protection in conservation measures. Conclusions Geographic disparities in the abundance patterns of HTF complex were determined by hierarchical systems of environmental controls, wherein climatic and land-use dynamics act globally but are modulated by various regional and local determinants operating at increasingly finer scales. We highlighted that fern conservation must be tailored to particular geographic contexts and environmental conditions by incorporating a better understanding of the dynamics acting at different spatiotemporal scales.

Aguirre‐Liguori, J. A., A. Morales‐Cruz, and B. S. Gaut. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Molecular Ecology. https://doi.org/10.1111/mec.16715

Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce’s Disease), we predicted that accessions from one species (V. mustangensis) are particularly well‐suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines (V. vinifera) are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this work takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.

Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224

The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

Testo, W. L., A. L. de Gasper, S. Molino, J. M. G. y Galán, A. Salino, V. A. de O. Dittrich, and E. B. Sessa. 2022. Deep vicariance and frequent transoceanic dispersal shape the evolutionary history of a globally distributed fern family. American Journal of Botany. https://doi.org/10.1002/ajb2.16062

Premise Historical biogeography of ferns is typically expected to be dominated by long-distance dispersal, due to their minuscule spores. However, few studies have inferred the historical biogeography of a large and widely distributed group of ferns to test this hypothesis. Our aims are to determine the extent to which long-distance dispersal vs. vicariance have shaped the history of the fern family Blechnaceae, to explore ecological correlates of dispersal and diversification, and to determine whether these patterns differ between the northern and southern hemispheres. Methods We used sequence data for three chloroplast loci to infer a time-calibrated phylogeny for 154 out of 265 species of Blechnaceae, including representatives of all genera in the family. This tree was used to conduct ancestral range reconstruction and stochastic character mapping, estimate diversification rates, and identify ecological correlates of diversification. Key results Blechnaceae originated in Eurasia and began diversifying in the late Cretaceous. A lineage comprising most extant diversity diversified principally in the austral Pacific region around the Paleocene-Eocene Thermal Maximum. Land connections that existed near the poles during periods of warm climates likely facilitated migration of several lineages, with subsequent climate-mediated vicariance shaping current distributions. Long-distance dispersal is frequent and asymmetrical, with New Zealand/Pacific Islands, Australia, and tropical America being major source areas. Conclusions Ancient vicariance and extensive long-distance dispersal have shaped the history of Blechnaceae in both the northern and southern hemispheres. The exceptional diversity in austral regions appears to reflect rapid speciation in these areas; mechanisms underlying this evolutionary success remain uncertain.

Bernal‐Escobar, M., D. Zuleta, and K. J. Feeley. 2022. Changes in the climate suitability and growth rates of trees in eastern North America. Ecography 2022. https://doi.org/10.1111/ecog.06298

According to the ‘fitness‐suitability' hypothesis, ongoing changes in climate are expected to affect habitat suitability and hence species' fitness. In trees, differences in fitness may manifest as changes in growth rates, which will alter carbon uptake. Using tree‐ring data, we calculated > 1.5 million annual stem growth rate estimates (standardized for tree size) for 15 677 trees representing 37 species from 558 populations throughout eastern North America. We used collections data and species distribution models to estimate each population's climatic suitability from 1900 to 2010. We then assessed the relationships between growth, suitability and time using linear mixed‐effects models. We found that stem growth rates decreased significantly through time independent of changes in climate suitability and that relationships between growth rates and climate suitability were highly variable across species. Contrary to expectations, we found that growth rates were negatively correlated with species' climate suitability, a relationship that was consistent over time for gymnosperms and became more negative through time for angiosperms. These results may suggest that stem growth rates are not a good proxy for fitness and/or that unidentified factors may be slowing tree growth and outweighing any potential benefits of climate change and increasing atmospheric CO2 concentrations. Regardless of the cause, this finding indicates that we should not count on the increased growth of eastern North American trees to help offset anthropogenic carbon emissions.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.