Wissenschaft ermöglicht durch Exemplardaten

SASSI, D. 2024. Revision of the Griburius posticatus (Suffrian, 1866) species group (Coleoptera: Chrysomelidae: Cryptocephalinae). Zootaxa 5406: 201–237. https://doi.org/10.11646/zootaxa.5406.2.1

Nine species of Griburius Haldeman, 1849 have been revised and critically discussed. One additional species, formerly included in Metallactus Suffrian, 1852, has been transferred to Griburius: Griburius tredecimpunctatus (Suffrian, 1866) comb. nov. The following synonymies are proposed: Griburius hyacinthinus (Erichson, 1848) (= Griburius fragrans (Suffrian, 1866) syn nov.), Griburius posticatus (Suffrian, 1866) (= Griburius distigma (Suffrian, 1866) syn nov.; = Griburius rufomarginatus (Suffrian, 1866) syn nov.), Griburius tredecimpunctatus (Suffrian, 1866) comb. nov. (= Griburius incomparabilis (Suffrian, 1866) syn. nov.). Type series of each species were tracked down and a lectotype was designated for each of them, respectively. Redescriptions, illustrations and current known distribution of all the treated species are given. Additionally, Griburius bicoloratus sp. nov. and Griburius consanguineus sp. nov., both from Brazil, are described as new to science.  

Hamer, M., M. Kgatla, and B. Petersen. 2023. An assessment of collection specimen data for South African mountain plants and invertebrates. Transactions of the Royal Society of South Africa: 1–19. https://doi.org/10.1080/0035919x.2023.2200742

South Africa is considered a megadiverse country, with exceptionally high plant and relatively high animal species richness and endemism. The country’s species have been surveyed and studied for over 200 years, resulting in extensive natural science collections and a vast number of scientific papers and books. This study assessed whether existing data portals provide access to occurrence data and investigated the extent of the data in Global Biodiversity Information Facility and its completeness for plants and selected invertebrate taxa. The main focus was preserved specimen data, but some observation data from iNaturalist were also considered for selected analyses. Records that include species-level identification and co-ordinates were mapped in QGIS to show the coverage of collection localities across the country. The records that fall within the mountain range spatial layer were then extracted and counted to identify density of records per mountain range for various taxa. Forty percent of plant records are from mountain localities, and the Atlantic Cape Fold Mountains had the highest density of records. Table Mountain has been extensively collected for plants and invertebrates. A large proportion of the records for invertebrates lacked species-level identification and co-ordinates, resulting in a low number of records for analyses. The accessible data are only a relatively small subset of existing collections, and digitisation and data upgrading is considered a high priority before collecting gaps can be addressed by targeted surveys.

Moore, M. P., and F. Khan. 2023. Relatively large wings facilitate life at higher elevations among Nearctic dragonflies. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13946

Determining which traits allow species to live at higher elevations is essential to understanding the forces that shape montane biodiversity.For the many animals that rely on flight for locomotion, a long‐standing hypothesis is that species with relatively large wings should better persist in high‐elevation environments because wings that are large relative to the body generate more lift and decrease the aerobic costs of remaining aloft. Although these biomechanical and physiological predictions have received some support in birds, other flying taxa often possess smaller wings at high elevations or no wings at all.To test if predictions about the requirements for relative wing size at high elevations are generalizable beyond birds, we conducted macroecological analyses on the altitudinal characteristics of 302 Nearctic dragonfly species.Consistent with the biomechanical and aerobic hypotheses, species with relatively larger wings live at higher elevations and have wider elevation breadths—even after controlling for a species' body size, mean thermal conditions, and range size. Moreover, a species' relative wing size had nearly as large of an impact on its maximum elevation as being adapted to the cold.Relatively large wings may be essential to high‐elevation life in species that completely depend on flight for locomotion, like dragonflies or birds. With climate change forcing taxa to disperse upslope, our findings further suggest that relatively large wings could be a requirement for completely volant taxa to persist in montane habitats.

Moore, M. P., K. Hersch, C. Sricharoen, S. Lee, C. Reice, P. Rice, S. Kronick, et al. 2021. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proceedings of the National Academy of Sciences 118. https://doi.org/10.1073/pnas.2101458118

Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic condi…

Orr, M. C., A. C. Hughes, D. Chesters, J. Pickering, C.-D. Zhu, and J. S. Ascher. 2021. Global Patterns and Drivers of Bee Distribution. Current Biology 31: 451-458.e4. https://doi.org/10.1016/j.cub.2020.10.053

Insects are the focus of many recent studies suggesting population declines, but even invaluable pollination service providers such as bees lack a modern distributional synthesis. Here, we combine a uniquely comprehensive checklist of bee species distributions and >5,800,000 public bee occurrence re…