Wissenschaft ermöglicht durch Exemplardaten

Chu, X., Gugger, P. F., Li, L., Zhao, J., & Li, Q. (2021). Responses of an endemic species ( Roscoea humeana ) in the Hengduan Mountains to climate change. Diversity and Distributions. doi:10.1111/ddi.13397 https://doi.org/10.1111/ddi.13397

Aim: Adaptation, migration and extinction of species is closely associated with climate changes and shape the distribution of biodiversity. The adaptive responses of species in the biodiversity hotspot, the Hengduan Mountains, to climate change remain poorly understood. Location: The Hengduan Mount…

Del Rio, C., Huang, J., Liu, P., Deng, W., Spicer, T. E. V., Wu, F., … Su, T. (2020). New Eocene fossil fruits and leaves of Menispermaceae from the central Tibetan Plateau and their biogeographic implications. Journal of Systematics and Evolution. doi:10.1111/jse.12701 https://doi.org/10.1111/jse.12701

Menispermaceae are a pantropical and temperate family with an extensive fossil record during the Paleogene, especially in North America and Europe, but with much less evidence from Asia. The latest fossil evidence indicates a succession of tropical to sub‐tropical flora on the central Tibetan Platea…

Rozefelds, A. C., Stull, G., Hayes, P., & Greenwood, D. R. (2020). The fossil record of Icacinaceae in Australia supports long-standing Palaeo-Antarctic rainforest connections in southern high latitudes. Historical Biology, 1–11. doi:10.1080/08912963.2020.1832089 https://doi.org/10.1080/08912963.2020.1832089

Fossil fruits of Icacinaceae are recorded from two Cenozoic sites in Australia, at Launceston in northern Tasmania and the Poole Creek palaeochannel in northern South Australia, representing the first report of fossil Icacinaceae from Australia. The Launceston material includes two endocarps with br…

Larridon, I., Galán Díaz, J., Bauters, K., & Escudero, M. (2020). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography. doi:10.1111/jbi.13982 https://doi.org/10.1111/jbi.13982

Aim: Colonization of new areas may entail shifts in diversification rates linked to biogeographical movement (dispersification), which may involve niche evolution if species were not exapted to new environments. Scleria (Cyperaceae) includes c. 250 species and has a pantropical distribution suggesti…

Cross, A. T., Krueger, T. A., Gonella, P. M., Robinson, A. S., & Fleischmann, A. S. (2020). Conservation of carnivorous plants in the age of extinction. Global Ecology and Conservation, e01272. doi:10.1016/j.gecco.2020.e01272 https://doi.org/10.1016/j.gecco.2020.e01272

Carnivorous plants (CPs)—those possessing specific strategies to attract, capture and kill animal prey and obtain nutrition through the absorption of their biomass—are harbingers of anthropogenic degradation and destruction of ecosystems. CPs exhibit highly specialised and often very sensitive ecolo…

Brightly, W. H., Hartley, S. E., Osborne, C. P., Simpson, K. J., & Strömberg, C. A. E. (2020). High silicon concentrations in grasses are linked to environmental conditions and not associated with C 4 photosynthesis. Global Change Biology. doi:10.1111/gcb.15343 https://doi.org/10.1111/gcb.15343

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regards to grasses and grasslands. Grasses are well known for their high sili…

Tan, K., Lu, T., & Ren, M.-X. (2020). Biogeography and evolution of Asian Gesneriaceae based on updated taxonomy. PhytoKeys, 157, 7–26. doi:10.3897/phytokeys.157.34032 https://doi.org/10.3897/phytokeys.157.34032

Based on an updated taxonomy of Gesneriaceae, the biogeography and evolution of the Asian Gesneriaceae are outlined and discussed. Most of the Asian Gesneriaceae belongs to Didymocarpoideae, except Titanotrichum was recently moved into Gesnerioideae. Most basal taxa of the Asian Gesneriaceae are fou…

De Jesús Hernández-Hernández, M., Cruz, J. A., & Castañeda-Posadas, C. (2020). Paleoclimatic and vegetation reconstruction of the miocene southern Mexico using fossil flowers. Journal of South American Earth Sciences, 104, 102827. doi:10.1016/j.jsames.2020.102827 https://doi.org/10.1016/j.jsames.2020.102827

Concern about the course of the current environmental problems has raised interest in investigating the different scenarios that have taken place in our planet throughout time. To that end, different methodologies have been employed in order to determine the different variables that compose the envi…

Banerjee, A. K., Guo, W., Qiao, S., Li, W., Xing, F., Lin, Y., … Huang, Y. (2020). Land masses and oceanic currents drive population structure of Heritiera littoralis , a widespread mangrove in the Indo‐West Pacific. Ecology and Evolution, 10(14), 7349–7363. doi:10.1002/ece3.6460 https://doi.org/10.1002/ece3.6460

Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis . This study aimed to assess geographic distribution of gen…

Jahanshiri, E., Mohd Nizar, N. M., Tengku Mohd Suhairi, T. A. S., Gregory, P. J., Mohamed, A. S., Wimalasiri, E. M., & Azam-Ali, S. N. (2020). A Land Evaluation Framework for Agricultural Diversification. Sustainability, 12(8), 3110. doi:10.3390/su12083110 https://doi.org/10.3390/su12083110

Shortlisting ecologically adaptable plant species can be a starting point for agricultural diversification projects. We propose a rapid assessment framework based on an ecological model that can accelerate the evaluation of options for sustainable crop diversification. To test the new model, expert-…