Wissenschaft ermöglicht durch Exemplardaten

Yousefi, M., A. Mahmoudi, A. Kafash, A. Khani, and B. Kryštufek. 2022. Biogeography of rodents in Iran: species richness, elevational distribution and their environmental correlates. Mammalia 86: 309–320. https://doi.org/10.1515/mammalia-2021-0104

Abstract Rodent biogeographic studies are disproportionately scarce in Iran, however, they are an ideal system to understand drivers of biodiversity distributions in the country. The aims of the present research are to determine (i) the pattern of rodent richness across the country, (ii) quantify th…

Liu, M., and L. Yang. 2022. Northward expansion of fire-adaptative vegetation in future warming. Environmental Research Letters 17: 024008. https://doi.org/10.1088/1748-9326/ac417d

Fire frequency and intensity are increasing due to higher temperatures and more droughts. The distributions of fuels (vegetation in natural conditions) are also changing in response to climate change. The vegetation in cold environments such as high latitudes and high altitudes is found to move upwa…

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Banerjee, A. K., H. Feng, Y. Lin, X. Liang, J. Wang, and Y. Huang. 2022. Setting the priorities straight - Species distribution models assist to prioritize conservation targets for the mangroves. Science of The Total Environment 806: 150937. https://doi.org/10.1016/j.scitotenv.2021.150937

Mangrove forests provide a wide range of ecosystem services, yet they are declining rapidly due to climate change and human activities. Identification of conservation priority targets across spatial and temporal scales may assist in planning and decision making, especially in areas having rich mangr…

Ma, C.-S., W. Zhang, Y. Peng, F. Zhao, X.-Q. Chang, K. Xing, L. Zhu, et al. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications 12. https://doi.org/10.1038/s41467-021-25505-7

Climate change has the potential to change the distribution of pests globally and their resistance to pesticides, thereby threatening global food security in the 21st century. However, predicting where these changes occur and how they will influence current pest control efforts is a challenge. Using…

Mazijk, R., M. D. Cramer, and G. A. Verboom. 2021. Environmental heterogeneity explains contrasting plant species richness between the South African Cape and southwestern Australia. Journal of Biogeography 48: 1875–1888. https://doi.org/10.1111/jbi.14118

Aim: Given the importance of environmental heterogeneity as a driver of species richness through its effects on species diversification and coexistence, we asked whether the dramatic difference in species richness per unit area between two similar Mediterranean‐type biodiversity hotspots is explaine…

Banerjee, A. K., H. Wu, W. Guo, W. Ng, W. Li, Y. Ma, H. Feng, and Y. Huang. 2021. Deciphering the global phylogeography of a coastal shrub ( Scaevola taccada ) reveals the influence of multiple forces on contemporary population structure. Journal of Systematics and Evolution 60: 809–823. https://doi.org/10.1111/jse.12746

The phylogeography of coastal plant species is heavily influenced by past sea‐level fluctuations, dispersal barriers, and life‐history traits, such as long‐distance dispersal ability of the propagules. Unlike the widely studied mangroves, phylogeographic patterns have remained mostly obscure for oth…

Brandt, A. J., P. J. Bellingham, R. P. Duncan, T. R. Etherington, J. D. Fridley, C. J. Howell, P. E. Hulme, et al. 2020. Naturalised plants transform the composition and function of the New Zealand flora. Biological Invasions 23: 351–366. https://doi.org/10.1007/s10530-020-02393-4

The New Zealand flora has a high proportion of endemic species but has been invaded by almost the same number of non-native plant species. To support management of invasive plant species, we provide an updated inventory of New Zealand’s naturalised flora and compare it with the native flora to ident…

Yi, S., C.-P. Jun, K. Jo, H. Lee, M.-S. Kim, S. D. Lee, X. Cao, and J. Lim. 2020. Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports 10. https://doi.org/10.1038/s41598-020-74994-x

Loading...