Wissenschaft ermöglicht durch Exemplardaten
Wei, Z., D. Jiao, C. A. Wehenkel, X. Wei, and X. Wang. 2024. Phylotranscriptomic and ecological analyses reveal the evolution and morphological adaptation of Abies. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.13760
Coniferous forests are under severe threat of the rapid anthropogenic climate warming. Abies (firs), the fourth‐largest conifer genus, is a keystone component of the boreal and temperate dark‐coniferous forests and harbors a remarkably large number of relict taxa. However, the uncertainty of the phylogenetic and biogeographic history of Abies significantly impedes our prediction of future dynamics and efficient conservation of firs. In this study, using 1,533 nuclear genes generated from transcriptome sequencing and a complete sampling of all widely recognized species, we have successfully reconstructed a robust phylogeny of global firs, in which four clades are strongly supported and all intersectional relationships are resolved, although phylogenetic discordance caused mainly by incomplete lineage sorting and hybridization was detected. Molecular dating and ancestral area reconstruction suggest a Northern Hemisphere high‐latitude origin of Abies during the Late Cretaceous, but all extant firs diversified during the Miocene to the Pleistocene, and multiple continental and intercontinental dispersals took place in response to the late Neogene climate cooling and orogenic movements. Notably, four critically endangered firs endemic to subtropical mountains of China, including A. beshanzuensis, A. ziyuanensis, A. fanjingshanensis and A. yuanbaoshanensis from east to west, have different origins and evolutionary histories. Moreover, three hotspots of species richness, including western North America, central Japan, and the Hengduan Mountains, were identified in Abies. Elevation and precipitation, particularly precipitation of the coldest quarter, are the most significant environmental factors driving the global distribution pattern of fir species diversity. Some morphological traits are evolutionarily constrained, and those linked to elevational variation (e.g., purple cone) and cold resistance (e.g., pubescent branch and resinous bud) may have contributed to the diversification of global firs. Our study sheds new light on the spatiotemporal evolution of global firs, which will be of great help to forest management and species conservation in a warming world.
Fallon, B., and J. Cavender‐Bares. 2018. Leaf‐level trade‐offs between drought avoidance and desiccation recovery drive elevation stratification in arid oaks. Ecosphere 9. https://doi.org/10.1002/ecs2.2149
Understanding the extent to which climate limitations drive elevation stratification among species is integral to predicting the impacts of climate change. Zonation patterns of species within mountains have been well documented, and shifts in these patterns have been correlated with recent warming. However, the physiological mechanisms that explain these zonation patterns are not well understood. We used a system of broadly sympatric oak species within semi‐arid mountains to (1) investigate the extent to which species elevation ranges correlate with climate, (2) test for associations of cold and drought resistances with upper and lower elevation limits, and for trade‐offs between resistance mechanisms with elevation, and (3) examine the extent to which species‐wide climatic ranges predict traits that drive local community assembly along an elevation gradient. We found that aridity gradients but not winter minimum temperatures predict oak stratification. Species differed in drought resistance, demonstrating a trade‐off between drought avoidance and drought recovery. At lower elevations, species avoided drought stress during the dry season through leaf abscission; at upper elevations, they maintained transpiration but recovered from daily desiccation via higher leaf water storage capacity, rather than tolerating desiccation via lower turgor loss points. Freezing resistance, measured as stem electrolyte leakage, was not correlated with elevation differences. Taken together, these results indicate that elevation stratification is linked to drought resistance rather than freezing resistance. We also found evidence of niche partitioning among closely related oaks linked to contrasting leaf phenology. The functional, phenological, and physiological traits important for elevation stratification were correlated with species’ range‐wide mean annual precipitation and precipitation seasonality, but not aridity. Our findings indicate that drought resistance along a leaf avoidance–recovery trade‐off is integral to species stratification within this semi‐arid montane system. Additionally, the mechanism of stratification acts upon traits and strategies conserved at the species level. Species within this system are likely vulnerable to range retraction under increased drought as a consequence of this phenological avoidance–physiological tolerance trade‐off.
Liu, Y., H. Wu, Z. Zhang, W. Wang, G. Han, C. Zhang, X. Lyu, et al. 2024. Traditional Use, Phytochemistry, Pharmacology, Toxicology and Clinical Applications of Persicae Semen: A Review. Chinese Journal of Integrative Medicine. https://doi.org/10.1007/s11655-024-3815-4
Persicae Semen (Taoren), the seed of mature peaches consumed as both food and medicine, is native to the temperate regions of China, distributed in the provinces of North and East China, and currently cultivated worldwide. The primary components of Persicae Semen include volatile oil, protein, amino acids, amygdalin, and prunasin, all of which have pharmacological properties, such as anti-inflammatory, antioxidant, and immune regulatory effects, and are clinically used in the treatment of gynecological, cardiovascular, cerebrovascular, orthopedic, and digestive system diseases. This review provides a comprehensive perspective on the resource status, ethnopharmacology, phytochemistry, pharmacology, and toxicology, as well as the trend of Persicae Semen patent, global distribution, and clinical applications. This review will help facilitate the development and utilization of Persicae Semen in clinical settings.
López-Reyes, K., C. Yáñez-Arenas, and F. Villalobos. 2024. Exploring the causes underlying the latitudinal variation in range sizes: Evidence for Rapoport’s rule in spiny lizards (genus Sceloporus) B. K. Acharya [ed.],. PLOS ONE 19: e0306832. https://doi.org/10.1371/journal.pone.0306832
Species’ range size is a fundamental unit of analysis in biodiversity research, given its association with extinction risk and species richness. One of its most notable patterns is its positive relationship with latitude, which has been considered an ecogeographical rule called Rapoport’s rule. Despite this rule being confirmed for various taxonomic groups, its validity has been widely discussed and several taxa still lack a formal assessment. Different hypotheses have been proposed to explain their potential mechanisms, with those related to temperature and elevational being the most supported thus far. In this study, we employed two level of analyses (cross-species and assemblage) to investigate the validity of Rapoport’s rule in spiny lizards (genus Sceloporus). Additionally, we evaluated four environmental-related hypotheses (minimum temperature, temperature variability, temperature stability since the last glacial maximum, and elevation) posed to explain such pattern, contrasting our results to those patterns expected under a null model of range position. Our results provided support for Rapoport’s rule at both levels of analyses, contrasting with null expectations. Consistently, minimum temperature and elevation were the most relevant variables explaining the spatial variation in range size. At the cross-species level, our null simulations revealed that both variables deviated significantly from random expectations. Conversely, at the assemblage level, none of the variables were statistically different from the expected relationships. We discussed the implication of our findings in relation to the ecology and evolution of spiny lizards.
Reichgelt, T. 2024. Linking the macroclimatic niche of native lithophytic ferns and their prevalence in urban environments. American Journal of Botany 111. https://doi.org/10.1002/ajb2.16364
Premise Vertical surfaces in urban environments represent a potential expansion of niche space for lithophytic fern species. There are, however, few records of differential success rates of fern species in urban environments.MethodsThe occurrence rates of 16 lithophytic fern species native to the northeastern USA in 14 biomes, including four urban environments differentiated by percentage of impervious surfaces, were evaluated. In addition, the natural macroclimatic ranges of these species were analyzed to test whether significant differences existed in climatic tolerance between species that occur in urban environments and species that do not.ResultsThree species appear to preferentially occur in urban environments, two species may facultatively occur in urban environments, and the remaining 11 species preferentially occur in nondeveloped rural environments. The natural range of fern species that occur in urban environments had higher summer temperatures than the range of species that do not, whereas other macroclimatic variables, notably winter temperatures and precipitation, were less important or insignificant.ConclusionsVertical surfaces in urban environments may represent novel niche space for some native lithophytic fern species in northeastern USA. However, success in this environment depends, in part, on tolerance of the urban heat island effect, especially heating of impervious surfaces in summer.
Gan, Z., X. Fang, C. Yin, Y. Tian, L. Zhang, X. Zhong, G. Jiang, and A. Tao. 2024. Extraction, purification, structural characterization, and bioactivities of the genus Rhodiola L. polysaccharides: A review. International Journal of Biological Macromolecules 276: 133614. https://doi.org/10.1016/j.ijbiomac.2024.133614
The genus Rhodiola L., an integral part of traditional Chinese medicine and Tibetan medicine in China, exhibits a broad spectrum of applications. This genus contains key compounds such as ginsenosides, polysaccharides, and flavonoids, which possess anti-inflammatory, antioxidant, hypoglycaemic, immune-enhancing, and anti-hypoxic properties. As a vital raw material, Rhodiola L. contributes to twenty-four kinds of Chinese patent medicines and 481 health food products in China, finding extensive application in the health food sector. Recently, polysaccharides have emerged as a focal point in natural product research, with applications spanning the medicine, food, and materials sectors. Despite this, a comprehensive and systematic review of polysaccharides from the genus Rhodiola L. polysaccharides (TGRPs) is warranted. This study undertakes a systematic review of both domestic and international literature, assessing the research advancements and chemical functional values of polysaccharides derived from Rhodiola rosea. It involves the isolation, purification, and identification of a variety of homogeneous polysaccharides, followed by a detailed analysis of their chemical structures, pharmacological activities, and molecular mechanisms, structure-activity relationship (SAR) of TGRPs. The discussion includes the influence of molecular weight, monosaccharide composition, and glycosidic bonds on their biological activities, such as sulfation and carboxymethylation et al. Such analyses are crucial for deepening the understanding of Rhodiola rosea and for fostering the development and exploitation of TGRPs, offering a reference point for further investigations into TGRPs and their resource utilization.
López-Pérez, J. D., S. Zamudio, G. Munguía-Lino, and A. Rodríguez. 2024. Una especie endémica nueva y distribución de la riqueza de especies del género <i>Pinguicula</i> (Lentibulariaceae) en la Faja Volcánica Trans-Mexicana, México. Botanical Sciences 102: 995–1008. https://doi.org/10.17129/botsci.3485
Background: The genus Pinguicula harbors 110 species, of which 53 are distributed in Mexico. The formation of the Mexican mountains has favored the Pinguicula diversification. Pinguicula specimens collected in the State of México, along the Trans-Mexican Volcanic Belt (TMVB) do not correspond with any known species. Questions: Do the collected specimens belong to a new species? What is its conservation status? How many Pinguicula species are there along the TMVB and how do they differentiate? How is the Pinguicula species richness distributed? Studied species: Pinguicula. Study site and dates: TMVB, 2005-2023. Methods: Based on herbarium specimens and recently collected material, a morphological analysis and description were made. Conservation status was assessed following IUCN Red List Categories and Criteria. Herbarium specimens and digital records of Pinguicula from the TMVB were examined to generate a list and key. We analyzed the richness distribution of Pinguicula by states, vegetation types, elevation ranges, and grid cells. Results: Pinguicula tlahuica is proposed as a new species. It is distinguished by the linear-spatulate summer leaves. The new species falls into the Endangered (EN) category. Along the TMVB, 16 species of Pinguicula are distributed. The State of México, Hidalgo and Michoacán, and the pine-oak forest were the richest. Pinguicula appeared between 759-3,427 m asl. The grid cell analyses revealed different areas with high richness. Conclusions: Along the TMVB, the Pinguicula species richness centered on the Eastern and Western sectors. Pinguicula crassifolia, P. michoacana, P. tlahuica, and P. zamudioana are endemic to the TMVB.
Andrade-Pereira, D., and K. Cuddington. 2024. Range expansion risk for a newly established invasive duckweed species in Europe and Canada. Plant Ecology. https://doi.org/10.1007/s11258-024-01436-3
Landoltia punctata is an invasive aquatic plant that has spread across the United States. Unlike native duckweeds, this species has developed herbicide resistance. As a result, invasion can lead to high management costs and the loss of recreational areas and natural habitats. The species has been recently found in Europe, and is also approaching the northern US border with Canada. We predicted the potential distribution of L. punctata in western Europe and Canada using presence-only data from the Global Biodiversity Information Facility as well as other literature records. We fit predictive models to this data using a Maxent approach. Since climate data based on surface lake water conditions are often more relevant to macrophytes than air temperature metrics, our models included both water and air temperature bioclimatic variables related to the life history of the species. Model comparisons confirmed a superior fit of lake temperatures to duckweed distribution records. The best fit model suggests a high habitat suitability for the species in most Western European countries and Western Canada. A moderate emission scenario suggests that in 2041 currently compatible areas will still be suitable, and that the Great Lakes region will become suitable. Preventive measures to avoid future spread of L. punctata are recommended in these locations to avoid impacts associated with this and similar duckweed species in Europe and the US.
González-Martínez, C. A., L. Lozada-Pérez, M. E. Olson, and L. O. Alvarado-Cárdenas. 2024. Sistemática de Urostephanus: resurrección de un taxón Mesoamericano de Gonolobinae (Apocynaceae, Asclepiadoideae), con ocho nuevas combinaciones. Acta Botanica Mexicana. https://doi.org/10.21829/abm131.2024.2302
Background and Aims: Recent studies have focused on resolving the systematics of the tribe Gonolobinae of the family Apocynaceae, as well as the controversial genus Matelea s.l. However, many species within Matelea s.l. have not been evaluated phylogenetically. This is the case of M. gonoloboides, previously recognized as the type species of Urostephanus, and other taxa with similar floral morphology. The aim of this study is to test the monophyly of Urostephanus, including some species with morphology similar to M. gonoloboides. Furthermore, we evaluate the taxonomic position of the Urostephanus clade within the subtribe Gonolobinae and compare morphology among related clades. Methods: To assess phylogenetic relationships within Gonolobinae, we downloaded sequences from four loci for 94 species of the subtribe from GenBank. We extracted DNA and sequenced the trnL-F intergenic spacer and rps16 intron from four species of Dictyanthus and six species of Matelea, which are considered to belong to Urostephanus. We reconstructed the phylogeny with Bayesian inference using the maximum clade credibility tree. Based on the phylogenetic pattern, we performed morphological comparisons between the clades Dictyanthus, Polystemma, and Urostephanus. Key results: Phylogenetic analysis recovered Urostephanus as monophyletic and sister to Dictyanthus. Based on this phylogenetic pattern and floral morphology, we resurrect the genus Urostephanus. We propose eight new combinations for the species included in the phylogeny, as well as for those that share floral morphological similarity. We designate two lectotypes. Finally, we discuss aspects of morphology between Urostephanus and closely related groups. Conclusions: The current circumscription of Matelea s.l. includes species with high morphological diversity. With the phylogenetic and morphological evidence among related taxa, we support the resurrection of Urostephanus, more than 120 years after its description. These results contribute to the resolution of the systematics of Gonolobinae in Mesoamerica.
da Silva, A. S. S., X. Arnan, and P. M. de Medeiros. 2024. Climate change may alter the availability of wild food plants in the Brazilian semiarid. Regional Environmental Change 24. https://doi.org/10.1007/s10113-024-02250-3
Wild food plants (WFPs) are important components of the diet and a source of income for local communities in semiarid regions, given that these populations are commonly characterized by high socioeconomic vulnerability and dependence on natural resources for subsistence. In periods of food scarcity and crop failure, WFPs emerge as strategic resources for ensuring food and nutrition security. However, these little-researched plants may also be affected by climate change. Here, our objective was to determine the spatiotemporal dynamics of WFPs in the Brazilian semiarid and evaluate their potential availability in future climate change scenarios. We constructed habitat suitability models for economically and nutritionally important WFPs used in this region and projected future scenarios (2041–2060). Furthermore, we determined the geographical distribution, species richness, and composition (on local and regional scales) of WFPs in current and future scenarios. Our results showed that WFPs exhibited varied responses to climate change. The more pessimistic the future scenario, the greater the negative effects. Most WFP species exhibited a reduction in climatically suitable areas in future scenarios, resulting in a shrinkage of geographical ranges, a reduction in species richness, and alterations in community composition. These changes could have important implications for economic development, subsistence, and food and nutrition security in the region. Our findings offer insights that can guide actions for adaptation and mitigating the effects of climate change and promoting species conservation not only in the Brazilian semiarid but also in other semiarid regions worldwide.