Wissenschaft ermöglicht durch Exemplardaten

Gagnon, E., J. J. Ringelberg, A. Bruneau, G. P. Lewis, and C. E. Hughes. 2019. Global Succulent Biome phylogenetic conservatism across the pantropical Caesalpinia Group (Leguminosae). New Phytologist 222: 1994–2008. https://doi.org/10.1111/nph.15633

The extent to which phylogenetic biome conservatism versus biome shifting determine global patterns of biodiversity remains poorly understood. To address this question, we investigate the biogeography and trajectories of biome and growth form evolution across the Caesalpinia Group (Leguminosae), a c…

Sheppard, C. S., and F. M. Schurr. 2018. Biotic resistance or introduction bias? Immigrant plant performance decreases with residence times over millennia. Global Ecology and Biogeography. https://doi.org/10.1111/geb.12844

Aim: Invasions are dynamic processes. Invasive spread causes the geographical range size of alien species to increase with residence time. However, with time native competitors and antagonists can adapt to invaders. This build‐up of biotic resistance may eventually limit the invader’s performance an…

West, A. M., C. S. Jarnevich, N. E. Young, and P. L. Fuller. 2018. Evaluating Potential Distribution of High‐Risk Aquatic Invasive Species in the Water Garden and Aquarium Trade at a Global Scale Based on Current Established Populations. Risk Analysis 39: 1169–1191. https://doi.org/10.1111/risa.13230

Aquatic non‐native invasive species are commonly traded in the worldwide water garden and aquarium markets, and some of these species pose major threats to the economy, the environment, and human health. Understanding the potential suitable habitat for these species at a global scale and at regional…

Wan, J.-Z., Z.-X. Zhang, and C.-J. Wang. 2018. Identifying potential distributions of 10 invasive alien trees: implications for conservation management of protected areas. Environmental Monitoring and Assessment 190. https://doi.org/10.1007/s10661-018-7104-6

Tree invasion has the potential to negatively affect biodiversity and ecosystems, with invasive alien trees (IATs) expanding widely in protected areas (PAs) across different habitats. Thus, the effectiveness of PAs might be reduced. Investigation of the distributions of IAT is urgently required to i…

Ansaldi, B. H., S. J. Franks, and J. J. Weber. 2018. The influence of environmental factors on breeding system allocation at large spatial scales. AoB PLANTS 10. https://doi.org/10.1093/aobpla/ply069

Plant breeding systems can vary widely among populations, yet few studies have investigated abiotic factors contributing to variation across a broad geographic range. Here we investigate variation in reproductive traits of Triodanis perfoliata (Campanulaceae), a species that exhibits dimorphic cleis…

Wan, J.-Z., C.-J. Wang, and F.-H. Yu. 2019. Large-scale environmental niche variation between clonal and non-clonal plant species: Roles of clonal growth organs and ecoregions. Science of The Total Environment 652: 1071–1076. https://doi.org/10.1016/j.scitotenv.2018.10.280

Clonal plant species can produce genetically identical and potentially independent offspring, and dominate a variety of habitats. The divergent evolutionary mechanisms between clonal and non-clonal plants are interesting areas of ecological research. A number of studies have shown that the environme…

Milla, R., J. M. Bastida, M. M. Turcotte, G. Jones, C. Violle, C. P. Osborne, J. Chacón-Labella, et al. 2018. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nature Ecology & Evolution 2: 1808–1817. https://doi.org/10.1038/s41559-018-0690-4

The origins of agriculture were key events in human history, during which people came to depend for their food on small numbers of animal and plant species. However, the biological traits determining which species were domesticated for food provision, and which were not, are unclear. Here, we invest…

Garroutte, M., F. Huettmann, C. O. Webb, and S. M. Ickert-Bond. 2018. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine-learning approach. Journal of Systematics and Evolution 56: 476–497. https://doi.org/10.1111/jse.12456

This is the first comprehensive analysis of vascular plant diversity patterns in the Aleutian Islands to identify and quantify the impact of Aleutian Island distance dispersal barriers, geographical, ecological and anthropogenic factors. Data from public Open Access databases, printed floristic acco…

Inman, R., J. Franklin, T. Esque, and K. Nussear. 2018. Spatial sampling bias in the Neotoma paleoecological archives affects species paleo-distribution models. Quaternary Science Reviews 198: 115–125. https://doi.org/10.1016/j.quascirev.2018.08.015

The ability to infer paleo-distributions with limited knowledge of absence makes species distribution modeling (SDM) a useful tool for exploring paleobiogeographic questions. Spatial sampling bias is a known issue when modeling extant species. Here we quantify the spatial sampling bias in a North Am…

Jarnevich, C. S., M. A. Hayes, L. A. Fitzgerald, A. A. Yackel Adams, B. G. Falk, M. A. M. Collier, L. R. Bonewell, et al. 2018. Modeling the distributions of tegu lizards in native and potential invasive ranges. Scientific Reports 8. https://doi.org/10.1038/s41598-018-28468-w

Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.) - Salvator merianae (Argentine b…