Wissenschaft ermöglicht durch Exemplardaten

Lee, F., N. C. Boddy, M. Bloxham, A. R. McIntosh, G. L. W. Perry, and K. S. Simon. 2023. Spatiotemporal patterns of research on Southern Hemisphere amphidromous galaxiids: A semi–quantitative review. Austral Ecology. https://doi.org/10.1111/aec.13315

Amphidromy is a distinctive life‐history strategy of some fish species that involves spawning in fresh or brackish water followed by dispersal to sea by newly hatched larvae, where they develop for a short period. Individuals then return to freshwater as juveniles, where they feed and grow, before maturing and spawning. Six amphidromous species from the Southern Hemisphere genus Galaxias (G. truttaceus, G. fasciatus, G. argenteus, G. postvectis, G. brevipinnis, G. maculatus) are recreationally, culturally, and economically important as the juveniles are harvested. Due to ongoing population declines and a lack of critical demographic information, there is growing concern about the management of the species. Here, we used semi‐quantitative review, culturomics, and bibliometric tools to analyse peer‐reviewed research conducted on the six amphidromous species of Galaxias to: (i) understand how spatiotemporal patterns of research have shifted over the last five decades, and (ii) identify critical research gaps. Forty percent of studies (n = 295) covered a spatial extent of 10 km or less and 87% of studies lasted less than 2 years – studies were largely small and short relative to the species' ranges and their longevity. Additionally, we found important research gaps; for example, studies on the effects of climate change and the associated effects of disturbance, and the marine phase are scarce in the peer‐reviewed literature. Finally, we suggest that quantitative models have been underutilized as tools for studying amphidromous galaxiids and should be embraced to answer questions not readily addressed with field and laboratory‐based techniques. If these species are to be effectively managed, their population dynamics across spatiotemporal scales must be understood and critical and long‐standing gaps in research knowledge addressed.

Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073

Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.

Watts, J. L., and J. E. Watkins. 2022. New Zealand Fern Distributions from the Last Glacial Maximum to 2070: A Dynamic Tale of Migration and Community Turnover. American Fern Journal 112. https://doi.org/10.1640/0002-8444-112.4.354

The coming decades are predicated to bring widespread shifts in local, regional, and global climatic patterns. Currently there is limited understanding of how ferns will respond to these changes and few studies have attempted to model shifts in fern distribution in response to climate change. In this paper, we present a series of these models using the country of New Zealand as our study system. Ferns are notably abundant in New Zealand and play important ecological roles in early succession, canopy biology, and understory dynamics. Here we describe how fern distributions have changed since the Last Glacial Maximum to the present and predict how they will change with anthropogenic climate change – assuming no measures are taken to reduce carbon emissions. To do this, we used MaxEnt species distribution modelling with publicly available data from gbif.org and worldclim.org to predict the past, present, and future distributions of 107 New Zealand fern species. The present study demonstrates that ferns in New Zealand have and will continue to expand their ranges and migrate southward and upslope. Despite the predicted general increased range size as a result of climate change, our models predict that the majority (52%) of many species' current suitable habitats may be climatically unsuitable in 50 years, including the ecologically important group: tree ferns. Additionally, fern communities are predicted to undergo drastic shifts in composition, which may be detrimental to overall ecosystem functioning in New Zealand.

Reichgelt, T., W. G. Lee, and D. E. Lee. 2022. The extinction of Miocene broad-leaved deciduous Nothofagaceae and loss of seasonal forest biomes in New Zealand. Review of Palaeobotany and Palynology: 104779. https://doi.org/10.1016/j.revpalbo.2022.104779

Quantitative leaf mass per area reconstructions and prevalence of plicate vernation in broad-leaved Nothofagaceae fossils reveal that deciduousness was common in the middle to late Miocene of New Zealand. This functional type was subsequently lost, as modern-day New Zealand Nothofagaceae have small leaves that live for at least a year. Moreover, fully deciduous trees across all plant families are rare in the current New Zealand flora. Based on modern-day distribution in the Southern Hemisphere, broad-leaved deciduous Nothofagaceae occupy regions with consistently large seasonal differences in precipitation and cloud cover, relative to other functional types in the family (evergreen, small-leaved). Specifically, broad-leaved deciduous Nothofagaceae are in leaf in summer when cloud cover and precipitation are low, but are leafless in winter when cloud cover and precipitation is high. Notably, the seasonal difference in precipitation and cloud cover are more important in explaining deciduousness in Nothofagaceae than winter temperatures. Therefore, potential summer photosynthetic gains likely determine deciduousness in Nothofagaceae. Miocene palaeoclimate reconstructions reveal that New Zealand broad-leaved deciduous Nothofagaceae also thrived in a climate with larger seasonal precipitation differences than today, in an overall warmer climate. We suggest that deciduous Nothofagaceae in the New Zealand flora went extinct as the global climate cooled and summer photosynthetic gains diminished, as summers became progressively rainier and cloudier, favoring an evergreen habit.

Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292

Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

de Oliveira, M. H. V., B. M. Torke, and T. E. Almeida. 2021. An inventory of the ferns and lycophytes of the Lower Tapajós River Basin in the Brazilian Amazon reveals collecting biases, sampling gaps, and previously undocumented diversity. Brittonia 73: 459–480. https://doi.org/10.1007/s12228-021-09668-7

Ferns and lycophytes are an excellent group for conservation and species distribution studies because they are closely related to environmental changes. In this study, we analyzed collection gaps, sampling biases, richness distribution, and the species conservation effectiveness of protected areas i…

Magri, D., I. Parra, F. Di Rita, J. Ni, K. Shichi, and J. R. P. Worth. 2020. Linking worldwide past and present conifer vulnerability. Quaternary Science Reviews 250: 106640. https://doi.org/10.1016/j.quascirev.2020.106640

Inventories of species recently extinct or threatened with extinction may be found in global databases. However, despite the large number of published fossil based-studies, specific databases on the vulnerability of species in the past are not available. We compiled a worldwide database of published…

Brandt, A. J., P. J. Bellingham, R. P. Duncan, T. R. Etherington, J. D. Fridley, C. J. Howell, P. E. Hulme, et al. 2020. Naturalised plants transform the composition and function of the New Zealand flora. Biological Invasions 23: 351–366. https://doi.org/10.1007/s10530-020-02393-4

The New Zealand flora has a high proportion of endemic species but has been invaded by almost the same number of non-native plant species. To support management of invasive plant species, we provide an updated inventory of New Zealand’s naturalised flora and compare it with the native flora to ident…

Bazzicalupo, A. L., J. Whitton, and M. L. Berbee. 2019. Over the hills, but how far away? Estimates of mushroom geographic range extents. Journal of Biogeography. https://doi.org/10.1111/jbi.13617

Aim: Geographic distributions of mushroom species remain poorly understood despite their importance for advancing our understanding of the habitat requirements, species interactions and ecosystem functions of this key group of organisms. Here, we estimate geographic range extents (maximum within‐spe…