Wissenschaft ermöglicht durch Exemplardaten

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation. https://doi.org/10.1007/s10531-022-02497-4

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.

Tanshi, I., B. C. Obitte, A. Monadjem, S. J. Rossiter, M. Fisher‐Phelps, and T. Kingston. 2022. Multiple dimensions of biodiversity in paleotropical hotspots reveal comparable bat diversity. Biotropica. https://doi.org/10.1111/btp.13143

Bat species commonly comprise at least 50% of tropical mammalian assemblages, but Afrotropical bat faunas have been little studied leading to perceptions that they are depauperate. Here, we compare alpha taxonomic, functional, and phylogenetic diversity of insectivorous bats belonging to the narrow‐space foraging ensemble from a bat diversity hotspot in Nigeria to species‐rich sites in Indonesia and Malaysia, using previously published data. The Nigerian site is protected unlogged forests at Afi Mountain Wildlife Sanctuary and Cross River National Park. For comparison, we targeted similar unlogged forest sites in Southeast Asia: Indonesia—Bukit Barisan Selatan National Park Forest in Sumatra; and Kakenauwe Forest Reserve on Buton Island, Sulawesi; and another in Malaysia—Krau Wildlife Reserve. All sites were sampled using comparable methods, with an emphasis on harp traps that effectively capture the forest‐interior ensembles. We also compare regional beta diversity of bat assemblages in ecoregions using occurrence data (literature, unpublished records, and online natural history collections) from the Lower Guinean Forest and the Malay Peninsula. We demonstrate comparable alpha taxonomic, functional, and phylogenetic diversity of narrow‐space bats among sites in Nigeria and Indonesia, but greater diversity in Malaysia. Turnover and overall beta diversity of bats among ecoregions was comparable between the Lower Guinean Forest and the Malay Peninsula, but nestedness was higher in the latter. Our results reiterate the value of harp traps in generating bat survey data that allows equatable comparisons of “mist net avoiders” in the Paleotropical forest understory. Our findings have implications for regional and local bat conservation.

Sotuyo, S., E. Pedraza-Ortega, E. Martínez-Salas, J. Linares, and L. Cabrera. 2022. Insights into phylogenetic divergence of Dalbergia (Leguminosae: Dalbergiae) from Mexico and Central America. Frontiers in Ecology and Evolution 10. https://doi.org/10.3389/fevo.2022.910250

The pantropical genus Dalbergia includes more than 250 species. Phylogenetic studies of the group are scarce and have only included two or three species distributed in Mexico. We obtained herbarium samples of Mexican, Central American, and South American species (sourced from MEXU). In addition, sequences of GenBank accessions were used to complement the study. Using internal transcribed spacer (ITS), the matK and rbcL sequences from 384 accessions comprising species from America, Asia, and Africa were sampled to evaluate phylogenetic relationships of Mexican species and infrageneric classifications based on morphological data. Phylogenetic analyses suggest that the genus Dalbergia is monophyletic and originated in South America. The species distributed in Mexico are not a monophyletic clade but are divided into four clades with affinities to South American and Asian species clades. There is no correlation between geography and large-scale phylogeny. The estimated ages of the Mexican and Central American clades ranged from 11.32 Ma (Dalbergia granadillo clade) to 1.88 Ma (Dalbergia ecastaphyllum clade). Multiple long-distance dispersal events should be used to explain the current genus distribution.

Zhao, J., X. Yu, W. J. Kress, Y. Wang, Y. Xia, and Q. Li. 2022. Historical biogeography of the gingers and its implications for shifts in tropical rain forest habitats. Journal of Biogeography 49: 1339–1351. https://doi.org/10.1111/jbi.14386

Aim The relationships between biome shifts and global environmental changes in temperate zone habitats have been extensively explored; yet, the historical dynamics of taxa found in the tropical rain forest (TRF) remain poorly known. This study aims to reconstruct the relationships between tropical rain forest shifts and global environmental changes through the patterns of historical biogeography of a pantropical family of monocots, the Zingiberaceae. Location Global. Taxon Zingiberaceae. Methods We sampled DNA sequences (nrITS, trnK, trnL-trnF and psbA-trnH) from GenBank for 77% of the genera, including 30% of species, in the Zingiberaceae. Global fossil records of the Zingiberaceae were collected from literatures. Rates of speciation, extinction and diversification were estimated based on phylogenetic data and fossil records through methods implemented in BAMM. Ancestral ranges were estimated using single-tree BioGeoBEARS and multiple-trees BioGeoBEARS in RASP. Dispersal rate through time and dispersal rate among regions were calculated in R based on the result of ancestral estimation. Results The common ancestor of the Zingiberaceae likely originated in northern Africa during the mid-Cretaceous, with later dispersal to the Asian tropics. Indo-Burma, rather than Malesia, was likely a provenance of the common ancestor of Alpinioideae–Zingiberoideae. Several abrupt shifts of evolutionary rates from the Palaeocene were synchronized with sudden global environmental changes. Main conclusions Integrating phylogenetic patterns with fossil records suggests that the Zingiberaceae dispersed to Asia through drift of the Indian Plate from Africa in the late Palaeocene. Formation of island chains, land corridors and warming temperatures facilitated the emigration of the Zingiberaceae to a broad distribution across the tropics. Moreover, dramatic fluctuations of the speciation rate of Zingiberoideae appear to have been synchronized with global climate fluctuations. In general, the evolutionary history of the Zingiberaceae broadens our understanding of the association between TRF shifts in distribution and past global environmental changes, especially the origin of TRF in Southeast Asia.

Ramirez-Villegas, J., C. K. Khoury, H. A. Achicanoy, M. V. Diaz, A. C. Mendez, C. C. Sosa, Z. Kehel, et al. 2022. State of ex situ conservation of landrace groups of 25 major crops. Nature Plants 8: 491–499. https://doi.org/10.1038/s41477-022-01144-8

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation. By analysing the state of representation of traditional varieties of 25 major crops in ex situ repositories, this study demonstrates conservation progress made over more than a half-century and identifies the gaps remaining to be filled.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., D. R. Greenwood, S. Steinig, J. G. Conran, D. K. Hutchinson, D. J. Lunt, L. J. Scriven, and J. Zhu. 2022. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004418

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Colli-Silva, M., J. R. Pirani, and A. Zizka. 2022. Ecological niche models and point distribution data reveal a differential coverage of the cacao relatives (Malvaceae) in South American protected areas. Ecological Informatics 69: 101668. https://doi.org/10.1016/j.ecoinf.2022.101668

For many regions, such as in South America, it is unclear how well the existent protected areas network (PAs) covers different taxonomic groups and if there is a coverage bias of PAs towards certain biomes or species. Publicly available occurrence data along with ecological niche models might help to overcome this gap and to quantify the coverage of taxa by PAs ensuring an unbiased distribution of conservation effort. Here, we use an occurrence database of 271 species from the cacao family (Malvaceae) to address how South American PAs cover species with different distribution, abundance, and threat status. Furthermore, we compared the performance of online databases, expert knowledge, and modelled species distributions in estimating species coverage in PAs. We found 79 species from our survey (29% of the total) lack any record inside South American PAs and that 20 out of 23 species potentially threatened with extinction are not covered by PAs. The area covered by South American PAs was low across biomes, except for Amazonia, which had a relative high PA coverage, but little information on species distribution within PA available. Also, raw geo-referenced occurrence data were underestimating the number of species in PAs, and projections from ecological niche models were more prone to overestimating the number of species represented within PAs. We discuss that the protection of South American flora in heterogeneous environments demand for specific strategies tailored to particular biomes, including making new collections inside PAs in less collected areas, and the delimitation of more areas for protection in more known areas. Also, by presenting biasing scenarios of collection effort in a representative plant group, our results can benefit policy makers in conserving different spots of tropical environments highly biodiverse.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985. https://doi.org/10.1016/j.palaeo.2022.110985

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Schley, R. J., M. Qin, M. Vatanparast, P. Malakasi, M. Estrella, G. P. Lewis, and B. B. Klitgård. 2022. Pantropical diversification of padauk trees and relatives was influenced by biome‐switching and long‐distance dispersal. Journal of Biogeography 49: 391–404. https://doi.org/10.1111/jbi.14310

Aim: Phenotypes promoting dispersal over ecological timescales may have macroevolutionary consequences, such as long-distance dispersal and diversification. However, whether dispersal traits explain the distribution of pantropical plant groups remains unclear. Here we reconstruct the biogeographical…