Wissenschaft ermöglicht durch Exemplardaten
Örücü, Ö. K., H. Azadi, E. S. Arslan, Ö. Kamer Aksoy, S. Choobchian, S. N. Nooghabi, and H. I. Stefanie. 2023. Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. European Journal of Forest Research. https://doi.org/10.1007/s10342-023-01543-2
Ostrya carpinifolia Scop. (European Hop Hornbeam) is a native tree in Europe as a species of the Betulaceae family. European Hop Hornbeam has a significant value for the European flora, and assessing the effects of climate change on habitats of species is essential for its sustainability. With this point of view, the main aim of the research was to predict the present and future potential distribution of European Hop Hornbeam across Europe. ‘‘IPSL-CM6A-LR’’ climate change model, ninety-six occurrence data, and seven bioclimatic variables were used to predict potential distribution areas with MaxEnt 3.4.1 program. This study applied a change analysis by comparing the present predicted potential distribution of European Hop Hornbeam with the future predicted potential distribution under the 2041–2060 and 2081–2100 SSP2 4.5 and SSP5 8.5 climate change scenarios. Study results indicated that the sum of suitable and highly suitable areas of European Hop Hornbeam is calculated to be 1,136,706 km 2 for the current potential distribution. On the contrary, 2,107,187 km 2 of highly suitable and suitable areas will be diminished in the worst case by 2100. The most affected bioclimatic variable is BIO 19 (Precipitation of Coldest Quarter), considering the prediction of the species distribution. These findings indicated that the natural ecosystems of the Mediterranean region will shift to northern areas. This study represented a reference for creating a strategy for the protection and conservation of the species in the future.
Reichgelt, T., A. Baumgartner, R. Feng, and D. A. Willard. 2023. Poleward amplification, seasonal rainfall and forest heterogeneity in the Miocene of the eastern USA. Global and Planetary Change 222: 104073. https://doi.org/10.1016/j.gloplacha.2023.104073
Paleoclimate reconstructions can provide a window into the environmental conditions in Earth history when atmospheric carbon dioxide concentrations were higher than today. In the eastern USA, paleoclimate reconstructions are sparse, because terrestrial sedimentary deposits are rare. Despite this, the eastern USA has the largest population and population density in North America, and understanding the effects of current and future climate change is of vital importance. Here, we provide terrestrial paleoclimate reconstructions of the eastern USA from Miocene fossil floras. Additionally, we compare proxy paleoclimate reconstructions from the warmest period in the Miocene, the Miocene Climatic Optimum (MCO), to those of an MCO Earth System Model. Reconstructed Miocene temperatures and precipitation north of 35°N are higher than modern. In contrast, south of 35°N, temperatures and precipitation are similar to today, suggesting a poleward amplification effect in eastern North America. Reconstructed Miocene rainfall seasonality was predominantly higher than modern, regardless of latitude, indicating greater variability in intra-annual moisture transport. Reconstructed climates are almost uniformly in the temperate seasonal forest biome, but heterogeneity of specific forest types is evident. Reconstructed Miocene terrestrial temperatures from the eastern USA are lower than modeled temperatures and coeval Atlantic sea surface temperatures. However, reconstructed rainfall is consistent with modeled rainfall. Our results show that during the Miocene, climate was most different from modern in the northeastern states, and may suggest a drastic reduction in the meridional temperature gradient along the North American east coast compared to today.
Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13628
Aim Museum and herbarium specimen records are frequently used to assess the conservation status of species and their responses to climate change. Typically, occurrences with imprecise geolocality information are discarded because they cannot be matched confidently to environmental conditions and are thus expected to increase uncertainty in downstream analyses. However, using only precisely georeferenced records risks undersampling of the environmental and geographical distributions of species. We present two related methods to allow the use of imprecisely georeferenced occurrences in biogeographical analysis. Innovation Our two procedures assign imprecise records to the (1) locations or (2) climates that are closest to the geographical or environmental centroid of the precise records of a species. For virtual species, including imprecise records alongside precise records improved the accuracy of ecological niche models projected to the present and the future, especially for species with c. 20 or fewer precise occurrences. Using only precise records underestimated loss of suitable habitat and overestimated the amount of suitable habitat in both the present and the future. Including imprecise records also improves estimates of niche breadth and extent of occurrence. An analysis of 44 species of North American Asclepias (Apocynaceae) yielded similar results. Main conclusions Existing studies examining the effects of spatial imprecision typically compare outcomes based on precise records against the same records with spatial error added to them. However, in real-world cases, analysts possess a mix of precise and imprecise records and must decide whether to retain or discard the latter. Discarding imprecise records can undersample the geographical and environmental distributions of species and lead to mis-estimation of responses to past and future climate change. Our method, for which we provide a software implementation in the enmSdmX package for R, is simple to use and can help leverage the large number of specimen records that are typically deemed “unusable” because of spatial imprecision in their geolocation.
Yu, J., Y. Niu, Y. You, C. J. Cox, R. L. Barrett, A. Trias‐Blasi, J. Guo, et al. 2022. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan‐Hengduan Mountains. New Phytologist. https://doi.org/10.1111/nph.18580
Hybridization caused by frequent environmental changes can lead to both species diversification (speciation) and speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan‐Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence.We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focussed on reticulations in the trifoliolate lineage in the HHM region using a population‐level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation.Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal‐spatial framework. Around the HHM region, at least three hybridization hotspots were identified, one of which showed evidence of ongoing speciation reversal.We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Aguirre‐Liguori, J. A., A. Morales‐Cruz, and B. S. Gaut. 2022. Evaluating the persistence and utility of five wild Vitis species in the context of climate change. Molecular Ecology. https://doi.org/10.1111/mec.16715
Crop wild relatives (CWRs) have the capacity to contribute novel traits to agriculture. Given climate change, these contributions may be especially vital for the persistence of perennial crops, because perennials are often clonally propagated and consequently do not evolve rapidly. By studying the landscape genomics of samples from five Vitis CWRs (V. arizonica, V. mustangensis, V. riparia, V. berlandieri and V. girdiana) in the context of projected climate change, we addressed two goals. The first was to assess the relative potential of different CWR accessions to persist in the face of climate change. By integrating species distribution models with adaptive genetic variation, additional genetic features such as genomic load and a phenotype (resistance to Pierce’s Disease), we predicted that accessions from one species (V. mustangensis) are particularly well‐suited to persist in future climates. The second goal was to identify which CWR accessions may contribute to bioclimatic adaptation for grapevine (V. vinifera) cultivation. To do so, we evaluated whether CWR accessions have the allelic capacity to persist if moved to locations where grapevines (V. vinifera) are cultivated in the United States. We identified six candidates from V. mustangensis and hypothesized that they may prove useful for contributing alleles that can mitigate climate impacts on viticulture. By identifying candidate germplasm, this work takes a conceptual step toward assessing the genomic and bioclimatic characteristics of CWRs.
Marcussen, T., H. E. Ballard, J. Danihelka, A. R. Flores, M. V. Nicola, and J. M. Watson. 2022. A Revised Phylogenetic Classification for Viola (Violaceae). Plants 11: 2224. https://doi.org/10.3390/plants11172224
The genus Viola (Violaceae) is among the 40–50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker’s classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
Amaral, D. T., I. A. S. Bonatelli, M. Romeiro-Brito, E. M. Moraes, and F. F. Franco. 2022. Spatial patterns of evolutionary diversity in Cactaceae show low ecological representation within protected areas. Biological Conservation 273: 109677. https://doi.org/10.1016/j.biocon.2022.109677
Mapping biodiversity patterns across taxa and environments is crucial to address the evolutionary and ecological dimensions of species distribution, suggesting areas of particular importance for conservation purposes. Within Cactaceae, spatial diversity patterns are poorly explored, as are the abiotic factors that may predict these patterns. We gathered geographic and genetic data from 921 cactus species by exploring both the occurrence and genetic databases, which are tightly associated with drylands, to evaluate diversity patterns, such as phylogenetic diversity and endemism, paleo-, neo-, and superendemism, and the environmental predictor variables of such patterns in a global analysis. Hotspot areas of cacti diversity are scattered along the Neotropical and Nearctic regions, mainly in the desertic portion of Mesoamerica, Caribbean Island, and the dry diagonal of South America. The geomorphological features of these regions may create a complexity of areas that work as locally buffered zones over time, which triggers local events of diversification and speciation. Desert and dryland/dry forest areas comprise paleo- and superendemism and may act as both museums and cradles of species, displaying great importance for conservation. Past climates, topography, soil features, and solar irradiance seem to be the main predictors of distinct endemism types. The hotspot areas that encompass a major part of the endemism cells are outside or poorly covered by formal protection units. The current legally protected areas are not able to conserve the evolutionary diversity of cacti. Given the rapid anthropogenic disturbance, efforts must be reinforced to monitor biodiversity and the environment and to define/plan current and new protected areas.
Rewicz, A., M. Myśliwy, T. Rewicz, W. Adamowski, and M. Kolanowska. 2022. Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb. - is this herb a global threat? Science of The Total Environment 850: 157959. https://doi.org/10.1016/j.scitotenv.2022.157959
AimsThe present study is the first-ever attempt to generate information on the potential present and future distribution of Impatiens capensis (orange balsam) under various climate change scenarios. Moreover, the differences in bioclimatic preferences of native and non-native populations were evaluated.LocationGlobal.TaxonAngiosperms.MethodsA database of I. capensis localities was compiled based on the public database – the Global Biodiversity Information Facility (GBIF), herbarium specimens, and a field survey in Poland. The initial dataset was verified, and each record was assigned to one of two groups – native (3664 records from North America) or non-native (750 records from Europe and the western part of North America). The analyses involved bioclimatic variables in 2.5 arc-minutes of interpolated climate surface downloaded from WorldClim v. 2.1. MaxEnt version 3.3.2 was used to conduct the ecological niche modeling based on presence-only observations of I. capensis. Forecasts of the future distribution of the climatic niches of the studied species in 2080–2100 were made based on climate projections developed by the CNRM/CERFACS modeling and Model for Interdisciplinary Research on Climate (MIROC-6).Main conclusionsDistribution models created for “present time” showed slightly broader potential geographical ranges of both native and invasive populations of orange balsam. On the other hand, some areas (e.g. NW Poland, SW Finland), settled by the species, are far outside the modeled climate niche, which indicates a much greater adaptation potential of I. capensis. In addition, the models have shown that climate change will shift the native range of orange balsam to the north and the range of its European populations to the northwest. Moreover, while the coverage of niches suitable for I. capensis in America will extend due to climate change, the European populations will face 31–95 % habitat loss.
Kendig, A. E., S. Canavan, P. J. Anderson, S. L. Flory, L. A. Gettys, D. R. Gordon, B. V. Iannone III, et al. 2022. Scanning the horizon for invasive plant threats using a data-driven approach. NeoBiota 74: 129–154. https://doi.org/10.3897/neobiota.74.83312
AbstractEarly detection and eradication of invasive plants are more cost-effective than managing well-established invasive plant populations and their impacts. However, there is high uncertainty around which taxa are likely to become invasive in a given area. Horizon scanning that combines a data-driven approach with rapid risk assessment and consensus building among experts can help identify invasion threats. We performed a horizon scan of potential invasive plant threats to Florida, USA—a state with a high influx of introduced species, conditions that are generally favorable for plant establishment, and a history of negative impacts from invasive plants. We began with an initial list of 2128 non-native plant taxa that are known invaders or crop pests. We built on previous invasive species horizon scans by developing data-based criteria to prioritize 100 taxa for rapid risk assessment. The semi-automated prioritization process included selecting taxa “on the horizon” (i.e., not yet in the target location and not on a noxious weed list) with climate matching, naturalization history, “weediness” record, and global commonness. We derived overall invasion risk scores with rapid risk assessment by evaluating the likelihood of each of the taxa arriving, establishing, and having an impact in Florida. Then, following a consensus-building discussion, we identified six plant taxa as high risk, with overall risk scores ranging from 75 to 100 out of a possible 125. The six taxa are globally distributed, easily transported to new areas, found in regions with climates similar to Florida’s, and can impact native plant communities, human health, or agriculture. Finally, we evaluated our initial and final lists for potential biases. Assessors tended to assign higher risk scores to taxa that had more available information. In addition, we identified biases towards four plant families and certain geographical regions of origin. Our horizon scan approach identified taxa conforming to metrics of high invasion risk and used a methodology refined for plants that can be applied to other locations.
Bernal‐Escobar, M., D. Zuleta, and K. J. Feeley. 2022. Changes in the climate suitability and growth rates of trees in eastern North America. Ecography 2022. https://doi.org/10.1111/ecog.06298
According to the ‘fitness‐suitability' hypothesis, ongoing changes in climate are expected to affect habitat suitability and hence species' fitness. In trees, differences in fitness may manifest as changes in growth rates, which will alter carbon uptake. Using tree‐ring data, we calculated > 1.5 million annual stem growth rate estimates (standardized for tree size) for 15 677 trees representing 37 species from 558 populations throughout eastern North America. We used collections data and species distribution models to estimate each population's climatic suitability from 1900 to 2010. We then assessed the relationships between growth, suitability and time using linear mixed‐effects models. We found that stem growth rates decreased significantly through time independent of changes in climate suitability and that relationships between growth rates and climate suitability were highly variable across species. Contrary to expectations, we found that growth rates were negatively correlated with species' climate suitability, a relationship that was consistent over time for gymnosperms and became more negative through time for angiosperms. These results may suggest that stem growth rates are not a good proxy for fitness and/or that unidentified factors may be slowing tree growth and outweighing any potential benefits of climate change and increasing atmospheric CO2 concentrations. Regardless of the cause, this finding indicates that we should not count on the increased growth of eastern North American trees to help offset anthropogenic carbon emissions.