Wissenschaft ermöglicht durch Exemplardaten
Bywater‐Reyes, S., R. M. Diehl, A. C. Wilcox, J. C. Stella, and L. Kui. 2022. A Green New Balance: Interactions among riparian vegetation plant traits and morphodynamics in alluvial rivers. Earth Surface Processes and Landforms 47: 2410–2436. https://doi.org/10.1002/esp.5385
The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed material properties, and flow and sediment regimes. In many rivers, concurrent changes in 1) the composition of riparian vegetation communities as a result of exotic species invasion and 2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review how Tamarix, which has invaded many U.S. Southwest waterways, and Populus species, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modeling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found differences in the crown morphology, stem density, and flexibility of Tamarix compared to Populus influenced near‐bed flow velocities in a manner that favored aggradation associated with Tamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different for Tamarix‐ versus Populus‐dominated reaches, with faster and greater geomorphic adjustments for Tamarix. Collectively, our studies show how plant‐trait differences between Tamarix and Populus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure in additional to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.
Chevalier, M. 2022. <i>crestr</i>: an R package to perform probabilistic climate reconstructions from palaeoecological datasets. Climate of the Past 18: 821–844. https://doi.org/10.5194/cp-18-821-2022
Abstract. Statistical climate reconstruction techniques are fundamental tools to study past climate variability from fossil proxy data. In particular, the methods based on probability density functions (or PDFs) can be used in various environments and with different climate proxies because they rely on elementary calibration data (i.e. modern geolocalised presence data). However, the difficulty of accessing and curating these calibration data and the complexity of interpreting probabilistic results have often limited their use in palaeoclimatological studies. Here, I introduce a new R package (crestr) to apply the PDF-based method CREST (Climate REconstruction SofTware) on diverse palaeoecological datasets and address these problems. crestr includes a globally curated calibration dataset for six common climate proxies (i.e. plants, beetles, chironomids, rodents, foraminifera, and dinoflagellate cysts) associated with an extensive range of climate variables (20 terrestrial and 19 marine variables) that enables its use in most terrestrial and marine environments. Private data collections can also be used instead of, or in combination with, the provided calibration dataset. The package includes a suite of graphical diagnostic tools to represent the data at each step of the reconstruction process and provide insights into the effect of the different modelling assumptions and external factors that underlie a reconstruction. With this R package, the CREST method can now be used in a scriptable environment and thus be more easily integrated with existing workflows. It is hoped that crestr will be used to produce the much-needed quantified climate reconstructions from the many regions where they are currently lacking, despite the availability of suitable fossil records. To support this development, the use of the package is illustrated with a step-by-step replication of a 790 000-year-long mean annual temperature reconstruction based on a pollen record from southeastern Africa.
Okamura, Y., A. Sato, L. Kawaguchi, A. J. Nagano, M. Murakami, H. Vogel, and J. Kroymann. 2022. Microevolution of Pieris butterfly genes involved in host plant adaptation along a host plant community cline. Molecular Ecology 31: 3083–3097. https://doi.org/10.1111/mec.16447
Herbivorous insects have evolved counteradaptations to overcome the chemical defenses of their host plants. Several of these counteradaptations have been elucidated at the molecular level, in particular for insects specialized on cruciferous host plants. While the importance of these counteradaptations for host plant colonization is well established, little is known about their microevolutionary dynamics in the field. In particular, it is not known whether and how host plant diversity shapes diversity in insect counteradaptations. In this study, we examine patterns of host plant use and insect counteradaptation in three Pieris butterfly species across Japan. The larvae of these butterflies express nitrile‐specifier protein (NSP) and its paralog major allergen (MA) in their gut to overcome the highly diversified glucosinolate‐myrosinase defense system of their cruciferous host plants. Pieris napi and Pieris melete colonize wild Brassicaceae whereas Pieris rapae typically uses cultivated Brassica as a host, regardless of the local composition of wild crucifers. As expected, NSP and MA diversity was independent of the local composition of wild Brassicaceae in P. rapae. In contrast, NSP diversity correlated with local host plant diversity in both species that preferred wild Brassicaceae. P. melete and P. napi both revealed two distinct major NSP alleles, which shaped diversity among local populations, albeit with different evolutionary trajectories. In comparison, MA showed no indication for local adaptation. Altogether, MA appeared to be evolutionary more conserved than NSP, suggesting that both genes play different roles in diverting host plant chemical defense.
Li, L., X. Xu, H. Qian, X. Huang, P. Liu, J. B. Landis, Q. Fu, et al. 2022. Elevational patterns of phylogenetic structure of angiosperms in a biodiversity hotspot in eastern Himalaya Y. Qu [ed.],. Diversity and Distributions. https://doi.org/10.1111/ddi.13513
Aims The tropical niche conservatism (TNC) hypothesis and the out of the tropics (OTT) hypothesis propose mechanisms generating patterns of species diversity across warm-to-cold thermal gradients at large spatial scales. These two hypotheses both integrate ecological and biogeography-related evoluti…
Zhang, N., Z. Liao, S. Wu, M. P. Nobis, J. Wang, and N. Wu. 2021. Impact of climate change on wheat security through an alternate host of stripe rust. Food and Energy Security 11. https://doi.org/10.1002/fes3.356
In the 21st century, stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is still the most devastating disease of wheat globally. Despite the critical roles of the alternate host plants, the Berberis species, in the sexual reproduction and spread of Pst, the climate change impacts on t…
Vasconcelos, T., J. D. Boyko, and J. M. Beaulieu. 2021. Linking mode of seed dispersal and climatic niche evolution in flowering plants. Journal of Biogeography. https://doi.org/10.1111/jbi.14292
Aim: Due to the sessile nature of flowering plants, movements to new geographical areas occur mainly during seed dispersal. Frugivores tend to be efficient dispersers because animals move within the boundaries of their preferable niches, so seeds are more likely to be transported to environments tha…
Wen, A., T. Wu, X. Zhu, R. Li, X. Wu, J. Chen, Y. Qiao, et al. 2021. Changes in the spatial distribution of Bryophytes on the Qinghai–Tibet Plateau under CMIP6 future projections. Environmental Earth Sciences 81. https://doi.org/10.1007/s12665-021-10122-w
Bryophytes play important roles in high altitude–latitude ecosystem owing to their extensive geographical coverage. Particularly, the insulating effect prevent permafrost degradation with the rapidly climate warming on the QTP. However, few studies investigated how Bryophytes will react to environme…
Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885
The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…
Sitzia, T., H. Kudrnovsky, N. Müller, and B. Michielon. 2021. Biological flora of Central Europe: Myricaria germanica (L.) Desv. Perspectives in Plant Ecology, Evolution and Systematics 52: 125629. https://doi.org/10.1016/j.ppees.2021.125629
Myricaria germanica (German tamarisk or false tamarisk), Tamaricaceae, is a pioneer shrub native to the Eurasian temperate regions where it colonises gravel bars in braided rivers. Over the past 150 years, human alterations of rivers have caused its dramatic decline in Europe. This paper reviews the…
Savini, T., M. Namkhan, and N. Sukumal. 2021. Conservation status of Southeast Asian natural habitat estimated using Galliformes spatio-temporal range decline. Global Ecology and Conservation 29: e01723. https://doi.org/10.1016/j.gecco.2021.e01723
Southeast Asia has arguably the highest biodiversity loss due to the high deforestation rate and hunting pressure. In the region, 55 species of the family Phasianidae can be found in all available land habitats from lowland plains up to high-elevation mountainous areas. As ground-dwelling birds, the…