Wissenschaft ermöglicht durch Exemplardaten
Crespo-Mendes, N., A. Laurent, and M. Z. Hauschild. 2018. Effect factors of terrestrial acidification in Brazil for use in Life Cycle Impact Assessment. The International Journal of Life Cycle Assessment 24: 1105–1117. https://doi.org/10.1007/s11367-018-1560-7
Purpose:In Life Cycle Impact Assessment, atmospheric fate factors, soil exposure factors, and effect factors are combined to characterize potential impacts of acidifying substances in terrestrial environments. Due to the low availability of global data sets, effect factors (EFs) have been reported a…
Crespo-Mendes, N., A. Laurent, H. H. Bruun, and M. Z. Hauschild. 2019. Relationships between plant species richness and soil pH at the level of biome and ecoregion in Brazil. Ecological Indicators 98: 266–275. https://doi.org/10.1016/j.ecolind.2018.11.004
Soil pH has been used to indicate how changes in soil acidity can influence species loss. The correlation between soil pH and plant species richness has mainly been studied in North America and Europe, while there is a lack of studies exploring Tropical floras. Here, our aim was therefore to investi…
Antonelli, A., A. Zizka, F. A. Carvalho, R. Scharn, C. D. Bacon, D. Silvestro, and F. L. Condamine. 2018. Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences 115: 6034–6039. https://doi.org/10.1073/pnas.1713819115
The American tropics (the Neotropics) are the most species-rich realm on Earth, and for centuries, scientists have attempted to understand the origins and evolution of their biodiversity. It is now clear that different regions and taxonomic groups have responded differently to geological and climati…