Wissenschaft ermöglicht durch Exemplardaten

Serra‐Diaz, J. M., J. Borderieux, B. Maitner, C. C. F. Boonman, D. Park, W. Guo, A. Callebaut, et al. 2024. occTest: An integrated approach for quality control of species occurrence data. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13847

Aim Species occurrence data are valuable information that enables one to estimate geographical distributions, characterize niches and their evolution, and guide spatial conservation planning. Rapid increases in species occurrence data stem from increasing digitization and aggregation efforts, and citizen science initiatives. However, persistent quality issues in occurrence data can impact the accuracy of scientific findings, underscoring the importance of filtering erroneous occurrence records in biodiversity analyses.InnovationWe introduce an R package, occTest, that synthesizes a growing open‐source ecosystem of biodiversity cleaning workflows to prepare occurrence data for different modelling applications. It offers a structured set of algorithms to identify potential problems with species occurrence records by employing a hierarchical organization of multiple tests. The workflow has a hierarchical structure organized in testPhases (i.e. cleaning vs. testing) that encompass different testBlocks grouping different testTypes (e.g. environmental outlier detection), which may use different testMethods (e.g. Rosner test, jacknife,etc.). Four different testBlocks characterize potential problems in geographic, environmental, human influence and temporal dimensions. Filtering and plotting functions are incorporated to facilitate the interpretation of tests. We provide examples with different data sources, with default and user‐defined parameters. Compared to other available tools and workflows, occTest offers a comprehensive suite of integrated tests, and allows multiple methods associated with each test to explore consensus among data cleaning methods. It uniquely incorporates both coordinate accuracy analysis and environmental analysis of occurrence records. Furthermore, it provides a hierarchical structure to incorporate future tests yet to be developed.Main conclusionsoccTest will help users understand the quality and quantity of data available before the start of data analysis, while also enabling users to filter data using either predefined rules or custom‐built rules. As a result, occTest can better assess each record's appropriateness for its intended application.

Nitin Saraf, P., J. Srivastava, F. Munoz, B. Charles, P. Samal, and M. F. Quamar. 2024. Ecological niche modelling to project past, current and future distributional shift of black ebony tree Diospyros melanoxylon Roxb. in India. Nordic Journal of Botany. https://doi.org/10.1111/njb.04266

The present study utilized an ensemble modelling approach to predict the distribution of Diospyros melanoxylon under present, past (last glacial maximum (LGM), ~ 22 000 years BP, middle Holocene (MH) ~ 6000 years BP) and future climate change scenarios (RCP 2.6 and 8.5 for 2050s and 2070s). The annual mean temperature, mean temperature of the wettest quarter and annual precipitations were the most critical parameters that chiefly influence the distribution of D. melanoxylon. The ensemble model rendered high accuracy with AUC = 0.93, TSS = 0.74 and Kappa = 0.71. Past projections of D. melanoxylon indicated a widespread distribution during LGM and MH suggesting its adaptability to semi‐dry as well as warm and humid climate, respectively. Presence of fossil pollen evidence of D. melanoxylon in the suitable habitats derived through past projections in this study complements the model results and marks occurrences of the species during LGM and MH. By 2050s and 2070s (RCP 8.5), there would be a decline in the distribution by only 0.4% (13 622 km2) and 0.2% (6842 km2) of the extremely suitable habitats, respectively. The main factor leading to reduced habitat suitability is the anticipated rise in temperature and variations in seasonal precipitation patterns. Our findings, help in identifying the parts of the country which would be severely affected by future climate change scenarios and plan conservation strategies for this commercially important species to facilitate its growth in suitable habitats which are likely to sustain under future climatic conditions.

Ramírez-Barahona, S. 2024. Incorporating fossils into the joint inference of phylogeny and biogeography of the tree fern order Cyatheales R. Warnock, and M. Zelditch [eds.],. Evolution. https://doi.org/10.1093/evolut/qpae034

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage’s biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth–death process and the dispersal–extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic–Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils’ phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.

Anest, A., Y. Bouchenak-Khelladi, T. Charles-Dominique, F. Forest, Y. Caraglio, G. P. Hempson, O. Maurin, and K. W. Tomlinson. 2024. Blocking then stinging as a case of two-step evolution of defensive cage architectures in herbivore-driven ecosystems. Nature Plants. https://doi.org/10.1038/s41477-024-01649-4

Dense branching and spines are common features of plant species in ecosystems with high mammalian herbivory pressure. While dense branching and spines can inhibit herbivory independently, when combined, they form a powerful defensive cage architecture. However, how cage architecture evolved under mammalian pressure has remained unexplored. Here we show how dense branching and spines emerged during the age of mammalian radiation in the Combretaceae family and diversified in herbivore-driven ecosystems in the tropics. Phylogenetic comparative methods revealed that modern plant architectural strategies defending against large mammals evolved via a stepwise process. First, dense branching emerged under intermediate herbivory pressure, followed by the acquisition of spines that supported higher speciation rates under high herbivory pressure. Our study highlights the adaptive value of dense branching as part of a herbivore defence strategy and identifies large mammal herbivory as a major selective force shaping the whole plant architecture of woody plants. This study explores the evolution of two traits, branching density and spine presence, in the globally distributed plant family Combretaceae. These traits were found to have appeared in a two-step process in response to mammalian herbivory pressure, revealing the importance of large mammals in the evolution of plant architecture diversity.

Mathur, M., and P. Mathur. 2024. Ecological niche modelling of Indigofera oblongifolia (Forssk.): a global machine learning assessment using climatic and non-climatic predictors. Discover Environment 2. https://doi.org/10.1007/s44274-024-00029-1

Climate change and other extinction facilitators have caused significant shifts in the distribution patterns of many species during the past few decades. Restoring and protecting lesser-known species may be more challenging without adequate biogeographical information. To address this knowledge gap, the current study set out to determine the global spatial distribution patterns of Indigofera oblongifolia (Forssk) a relatively lesser-known leguminous species. This was accomplished by utilizing three distinct bioclimatic temporal frames (current, 2050, and 2070) and four greenhouse gas scenarios (RCPs 2.6, 4.5, 6.0, and 8.5), in addition to non-climatic predictors such as global livestock population, human modification of terrestrial ecosystems, and global fertilizers application (nitrogen and phosphorus). Furthermore, we evaluate the degree of indigenousness using the geographical area, habitat suitability categories, and number of polygons. This research reveals that climatic predictors outperform non-climatic predictors in terms of improving model quality. Precipitation Seasonality is one of the most important factors influencing this species' optimum habitat suitability up to 150 mm for the current, 2050 RCP 8.5 and 2070-RCPs 2.6, 4.5, and 8.5. Our ellipsoid niche modelling extends the range of precipitation during the wettest quarter and maximum temperature during the warmest month to 637 mm and 26.5–31.80 degrees Celsius, respectively. India has a higher indigenous score in the optimal class than the African region. This findings suggest that the species in question tends to occupy contiguous regions in Africa, while in India, it is dispersed into several smaller meta-populations.

Rautela, K., A. Kumar, S. K. Rana, A. Jugran, and I. D. Bhatt. 2024. Distribution, Chemical Constituents and Biological Properties of Genus Malaxis. Chemistry & Biodiversity. https://doi.org/10.1002/cbdv.202301830

The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 191 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (50) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.

Roberts, J., K. Dhileepan, and S. Florentine. 2024. A review of the biology, distribution, and management challenges posed by the invasive weed Ziziphus mauritianaL., with special reference to its invasion in Australia. Weed Research. https://doi.org/10.1111/wre.12610

Ziziphus mauritiana is an economically detrimental and environmentally destructive plant in non‐native areas where it has escaped cultivation. It forms dense, impenetrable thickets that restrict the movement of livestock across the landscape and has the capacity to alter various ecological functions at the site of invasion, all of which contribute towards land degradation and the reduction of economic profitability. Although there are several management strategies implemented to control Z. mauritiana, it is clear that no single‐method approach will effectively control the species in the long‐term. Whilst chemical and mechanical methods appear to show promising results, they tend to be restricted to areas that are easily accessible and, even so, can be challenging and laborious to treat evenly across dense thicket areas. Several prospective biological control agents have been identified for Z. mauritiana, although further investigations are required to ascertain the host specificity, and to explore and identify their climatic and environmental suitability of host specific agents for release in non‐native regions. Ecological burning alone is not effective in controlling Z. mauritiana and will likely increase its emergence. As such, it could be adopted as part of an integrated management approach to assist other methods for long‐term control, but again the development of such an approach requires further investigation. To contribute towards the control of Z. mauritiana, this review explores its biology, distribution and management challenges whilst identifying areas of research that will assist in the long‐term and confident control of the species, with an emphasis on its invasion in Australia.

Zhang, H., W. Guo, and W. Wang. 2023. The dimensionality reductions of environmental variables have a significant effect on the performance of species distribution models. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10747

How to effectively obtain species‐related low‐dimensional data from massive environmental variables has become an urgent problem for species distribution models (SDMs). In this study, we will explore whether dimensionality reduction on environmental variables can improve the predictive performance of SDMs. We first used two linear (i.e., principal component analysis (PCA) and independent components analysis) and two nonlinear (i.e., kernel principal component analysis (KPCA) and uniform manifold approximation and projection) dimensionality reduction techniques (DRTs) to reduce the dimensionality of high‐dimensional environmental data. Then, we established five SDMs based on the environmental variables of dimensionality reduction for 23 real plant species and nine virtual species, and compared the predictive performance of those with the SDMs based on the selected environmental variables through Pearson's correlation coefficient (PCC). In addition, we studied the effects of DRTs, model complexity, and sample size on the predictive performance of SDMs. The predictive performance of SDMs under DRTs other than KPCA is better than using PCC. And the predictive performance of SDMs using linear DRTs is better than using nonlinear DRTs. In addition, using DRTs to deal with environmental variables has no less impact on the predictive performance of SDMs than model complexity and sample size. When the model complexity is at the complex level, PCA can improve the predictive performance of SDMs the most by 2.55% compared with PCC. At the middle level of sample size, the PCA improved the predictive performance of SDMs by 2.68% compared with the PCC. Our study demonstrates that DRTs have a significant effect on the predictive performance of SDMs. Specifically, linear DRTs, especially PCA, are more effective at improving model predictive performance under relatively complex model complexity or large sample sizes.

Yim, C., E. S. Bellis, V. L. DeLeo, D. Gamba, R. Muscarella, and J. R. Lasky. 2023. Climate biogeography of Arabidopsis thaliana: Linking distribution models and individual variation. Journal of Biogeography. https://doi.org/10.1111/jbi.14737

Aim Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range‐wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity.LocationGlobal.TaxonArabidopsis thaliana (‘Arabidopsis’).MethodsWe fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current and future climates. We confronted model predictions with individual performance measured on 2194 herbarium specimens, and we asked whether predicted suitability was associated with life history and genomic variation measured on ~900 natural accessions.ResultsThe most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate‐associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late‐flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the centre of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well‐predicted by our native‐range model applied to certain regions but not others, suggesting it has colonized novel climates.Main ConclusionsIntegration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.

Geier, C., J. M. Bouchal, S. Ulrich, D. Uhl, T. Wappler, S. Wedmann, R. Zetter, et al. 2023. Potential pollinators and paleoecological aspects of Eocene Ludwigia (Onagraceae) from Eckfeld, Germany. Palaeoworld. https://doi.org/10.1016/j.palwor.2023.07.003

Paleogene flower-insect interactions and paleo-pollination processes are, in general, poorly understood and fossil evidence for such floral and faunal interactions are rarely reported. To shed light on angiosperm flower-insect interactions, we investigated several hundred fossil flowers and insects from the middle Eocene Fossil Lagerstätte of Eckfeld, Germany. During our work, we discovered a unique fossil Ludwigia flower (bud) with in situ pollen. The ecological preferences (climate, biome, habitat, etc.) of extant Ludwigia and the paleoecological configurations of the fossil plant assemblage support the taxonomic affiliation of the flower bud and an Eocene presence of Ludwigia in the vicinity of the former Lake Eckfeld. Today’s Ludwigia are mostly pollinated by Hymenoptera (bees). Therefore, we screened all currently known hymenopteran fossils from Eckfeld but found no Ludwigia pollen adhering to any of the specimens. On the contrary, we discovered Ludwigia pollen adhering to two different groups of Coleoptera (beetles). Our study suggests that during the Eocene of Europe, Ludwigia flowers were visited and probably pollinated by beetles and over time there was a shift in primary flower visitors/pollinators, from beetles to bees, sometime during the late Paleogene to Neogene.