Wissenschaft ermöglicht durch Exemplardaten

Pérez-Suárez, M., J. E. Ramírez-Albores, and Á. R. Martínez-Campos. 2023. Predicting the impacts of climate change on potential suitability habitats of three Juniperus trees in Mexico. Plant Ecology. https://doi.org/10.1007/s11258-023-01374-6

Future climate change will have severe impacts on the geographic distribution of species, likely leading to shifts in their suitable habitat and eventually to the extinction of some species whose distribution areas are restricted. However, some species may respond differently to climate change. In this study we model the current and future potential habitats of three Juniperus species with different population trends: J. jaliscana , J. monticola and J. pinchotii . Occurrence records were collected across their distribution, combined with environmental and topographical variables to generate a MaxEnt model of the potential distributions in the years 2050 and 2070. The most important environmental variables were precipitation of wettest quarter for J. jaliscana , maximum temperature of warmest month for J. monticola , and mean temperature of coldest quarter for J. pinchotii . Our results showed that the habitat suitability of these three Juniperus species decreased overall by more than 50% under the climate change scenarios. These findings contributed to a better understanding of the impacts of climate change on ecological distribution of these species and could inform decisions regarding to their conservation, and management, and sustainable use strategies, as well as to implement active ex situ conservation strategies.

Rodríguez-Merino, A. 2023. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. Plants 12: 3069. https://doi.org/10.3390/plants12173069

Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation’s greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.

Medzihorský, V., J. Trombik, R. Mally, M. Turčáni, and A. M. Liebhold. 2023. Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography. https://doi.org/10.1111/jbi.14625

Aim Many invasive plant species benefit from enemy release resulting from the absence of insect herbivores in their invaded range. However, over time, specialized herbivores may ‘catch up’ with such invasive plants. Black locust is a tree species with a relatively limited native range in North America but has invaded large areas in virtually every temperate continent including North America. We hypothesize that both intra- and intercontinental spread of black locust leads to a parallel, though delayed pattern of intra- and intercontinental spread of insect herbivores. Location Global. Taxon Black locust, Robinia pseudoacacia, and its insect herbivores. Methods We compiled historical records of the occurrence of insect herbivore species associated with R. pseudoacacia from all world regions. Based on this list, we describe taxonomic patterns and investigate associations between environmental features and numbers of non-native specialist herbivores in the portion of North America invaded by R. pseudoacacia. Results A total of 454 herbivorous species are recorded feeding on R. pseudoacacia across the world, with 23 of these being specialized on Robinia. From this group, seven species have successfully expanded their range beyond North America. Within North America, the richness of specialists is explained by a combination of road density, R. pseudoacacia density, distance from the R. pseudoacacia native range, and climate. Main Conclusion Non-native herbivore species have accumulated on invasive R. pseudoacacia in both North America and in other continents. The steady build-up of invasions likely has diminished the enemy release that this invasive tree species has benefited from – a trend that will likely continue in the future. These findings support the hypothesis that invasive plants promote parallel though delayed invasions of specialist insect herbivores.

Jiménez-López, D. A., M. J. Carmona-Higuita, G. Mendieta-Leiva, R. Martínez-Camilo, A. Espejo-Serna, T. Krömer, N. Martínez-Meléndez, and N. Ramírez-Marcial. 2023. Linking different resources to recognize vascular epiphyte richness and distribution in a mountain system in southeastern Mexico. Flora: 152261. https://doi.org/10.1016/j.flora.2023.152261

Mesoamerican mountains are important centers of endemism and diversity of epiphytes. The Sierra Madre of Chiapas in southeastern Mexico is a mountainous region of great ecological interest due to its high biological richness. We present the first checklist of epiphytes for this region based on a compilation of various information sources. In addition, we determined the conservation status for each species based on the Mexican Official Standard (NOM-059-SEMARNAT-2010), endemism based on geopolitical boundaries, spatial completeness with inventory completeness index, richness distribution with range maps, and the relationship between climatic variables (temperature and rainfall) with species richness using generalized additive models. Our dataset includes 9,799 records collected between 1896-2017. Our checklist includes 708 epiphytes within 160 genera and 26 families; the most species-rich family was Orchidaceae (355 species), followed by Bromeliaceae (82) and Polypodiaceae (79). There were 74 species within a category of risk and 59 species considered endemic. Completeness of epiphyte richness suggests that sampling is still largely incomplete, particularly in the lower parts of the mountain system. Species and family range maps show the highest richness at high elevations, while geographically richness increases towards the southeast. Epiphyte richness increases with increased rainfall, although a unimodal pattern was observed along the temperature gradient with a species richness peak between 16-20 C°. The Sierra Madre of Chiapas forms a refuge to more than 40% of all epiphytes reported for Mexico and its existing network of protected areas overlaps with the greatest epiphyte richness.

Shen, Y., Z. Tu, Y. Zhang, W. Zhong, H. Xia, Z. Hao, C. Zhang, and H. Li. 2022. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. Journal of Environmental Management 322: 116024. https://doi.org/10.1016/j.jenvman.2022.116024

Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.

Rodrigues, A. V., G. Nakamura, V. G. Staggemeier, and L. Duarte. 2022. Species misidentification affects biodiversity metrics: Dealing with this issue using the new R package naturaList. Ecological Informatics 69: 101625. https://doi.org/10.1016/j.ecoinf.2022.101625

Biodiversity databases are increasingly available and have fostered accelerated advances in many disciplines within ecology and evolution. However, the quality of the evidence generated depends critically on the quality of the input data, and species misidentifications are present in virtually any o…

Shen, Y., H. Xia, Z. Tu, Y. Zong, L. Yang, and H. Li. 2021. Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments. Molecular Ecology 31: 916–933. https://doi.org/10.1111/mec.16271

Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effe…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Wang, C.-J., and J.-Z. Wan. 2021. Functional trait perspective on suitable habitat distribution of invasive plant species at a global scale. Perspectives in Ecology and Conservation 19: 475–486. https://doi.org/10.1016/j.pecon.2021.07.002

Plant invasion has been proved to threaten biodiversity conservation and ecosystem maintenance at a global scale. It is a challenge to project suitable habitat distributions of invasive plant species (IPS) for invasion risk assessment at large spatial scales. Interaction outcomes between native and …

Diao, Y., J. Wang, F. Yang, W. Wu, J. Zhou, and R. Wu. 2021. Identifying optimized on-the-ground priority areas for species conservation in a global biodiversity hotspot. Journal of Environmental Management 290: 112630. https://doi.org/10.1016/j.jenvman.2021.112630

Threatened species are inadequately represented within protected areas (PAs) across the globe. Species conservation planning may be improved by using public species-occurrence databases, but empirical evidence is limited of how that may be accomplished at local scales. We used the Three Parallel Riv…