Wissenschaft ermöglicht durch Exemplardaten

Goodwin, Z. A., Muñoz-Rodríguez, P., Harris, D. J., Wells, T., Wood, J. R. I., Filer, D., & Scotland, R. W. (2020). How long does it take to discover a species? Systematics and Biodiversity, 1–10. doi:10.1080/14772000.2020.1751339 https://doi.org/10.1080/14772000.2020.1751339

The description of a new species is a key step in cataloguing the World’s flora. However, this is only a preliminary stage in a long process of understanding what that species represents. We investigated how long the species discovery process takes by focusing on three key stages: 1, the collection …

Peyre, G., Lenoir, J., Karger, D. N., Gomez, M., Gonzalez, A., Broennimann, O., & Guisan, A. (2020). The fate of páramo plant assemblages in the sky islands of the northern Andes. Journal of Vegetation Science. doi:10.1111/jvs.12898 https://doi.org/10.1111/jvs.12898

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, especially in the tropics, therefore, we predicted the future of plant species and communities on the unique páramo sky islands. We implemented the Spatially Explicit Species Assemblage Modelling framework, by i) …

Li, M., He, J., Zhao, Z., Lyu, R., Yao, M., Cheng, J., & Xie, L. (2020). Predictive modelling of the distribution of Clematis sect. Fruticella s. str. under climate change reveals a range expansion during the Last Glacial Maximum. PeerJ, 8, e8729. doi:10.7717/peerj.8729 https://doi.org/10.7717/peerj.8729

Background The knowledge of distributional dynamics of living organisms is a prerequisite for protecting biodiversity and for the sustainable use of biotic resources. Clematis sect. Fruticella s. str. is a small group of shrubby, yellow-flowered species distributed mainly in arid and semi-arid areas…

Léveillé-Bourret, É., Chen, B.-H., Garon-Labrecque, M.-È., Ford, B. A., & Starr, J. R. (2019). RAD sequencing resolves the phylogeny, taxonomy and biogeography of Trichophoreae despite a rapid recent radiation (Cyperaceae). Molecular Phylogenetics and Evolution, 106727. doi:10.1016/j.ympev.2019.106727 https://doi.org/10.1016/j.ympev.2019.106727

Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ∼17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) are controversial …

Mienna, I. M., Speed, J. D. M., Bendiksby, M., Thornhill, A. H., Mishler, B. D., & Martin, M. D. (2019). Differential patterns of floristic phylogenetic diversity across a post‐glacial landscape. Journal of Biogeography. doi:10.1111/jbi.13789 https://doi.org/10.1111/jbi.13789

Aim: In this study, we explored spatial patterns of phylogenetic diversity (PD) and endemism in the flora of Norway and tested hypothesized post‐glacial environmental drivers of PD, including temperature, precipitation, edaphic factors and time since glacial retreat. Location: Norway. Taxon: Vascula…

Mezghani, N., Khoury, C. K., Carver, D., Achicanoy, H. A., Simon, P., Flores, F. M., & Spooner, D. (2019). Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 0(0), 0. doi:10.2135/cropsci2019.05.0333 https://doi.org/10.2135/cropsci2019.05.0333

Crop wild relatives, the wild progenitors and closely related cousins of cultivated plant species, are sources of valuable genetic resources for crop improvement. Persisting gaps in knowledge of taxonomy, distributions, and characterization for traits of interest constrain their expanded use in plan…

Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R., & Weigel, D. (2019). Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature, 573(7772), 126–129. doi:10.1038/s41586-019-1520-9 https://doi.org/10.1038/s41586-019-1520-9

Through the lens of evolution, climate change is an agent of natural selection that forces populations to change and adapt, or face extinction. However, current assessments of the risk of biodiversity associated with climate change1 do not typically take into account how natural selection influences…

Fletcher, T. L., Warden, L., Sinninghe Damsté, J. S., Brown, K. J., Rybczynski, N., Gosse, J. C., & Ballantyne, A. P. (2019). Evidence for fire in the Pliocene Arctic in response to amplified temperature. Climate of the Past, 15(3), 1063–1081. doi:10.5194/cp-15-1063-2019 https://doi.org/10.5194/cp-15-1063-2019

The mid-Pliocene is a valuable time interval for investigating equilibrium climate at current atmospheric CO2 concentrations because atmospheric CO2 concentrations are thought to have been comparable to the current day and yet the climate and distribution of ecosystems were quite different. One intr…

Schubert, M., Marcussen, T., Meseguer, A. S., & Fjellheim, S. (2019). The grass subfamily Pooideae: Cretaceous–Palaeocene origin and climate‐driven Cenozoic diversification. Global Ecology and Biogeography. doi:10.1111/geb.12923 https://doi.org/10.1111/geb.12923

Aim: Frost is among the most dramatic stresses a plant can experience, and complex physiological adaptations are needed to endure long periods of sub‐zero temperatures. Owing to the need to evolve these complex adaptations, transitioning from tropical to temperate climates is regarded as difficult. …

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., … Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences, 116(22), 10874–10882. doi:10.1073/pnas.1817999116 https://doi.org/10.1073/pnas.1817999116

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and…