Bionomia wird am 2024-07-14 12:00 UTC für ca. 1 hr offline sein, um die Exemplardaten der Global Biodiversity Information Facility zu aktualisieren.

Wissenschaft ermöglicht durch Exemplardaten

Cheeseman, A. E., D. S. Jachowski, and R. Kays. 2024. From past habitats to present threats: tracing North American weasel distributions through a century of climate and land use change. Landscape Ecology 39.

Context Shifts in climate and land use have dramatically reshaped ecosystems, impacting the distribution and status of wildlife populations. For many species, data gaps limit inference regarding population trends and links to environmental change. This deficiency hinders our ability to enact meaningful conservation measures to protect at risk species. Objectives We investigated historical drivers of environmental niche change for three North American weasel species (American ermine, least weasel, and long-tailed weasel) to understand their response to environmental change. Methods Using species occurrence records and corresponding environmental data, we developed species-specific environmental niche models for the contiguous United States (1938–2021). We generated annual hindcasted predictions of the species’ environmental niche, assessing changes in distribution, area, and fragmentation in response to environmental change. Results We identified a 54% decline in suitable habitat alongside high levels of fragmentation for least weasels and region-specific trends for American ermine and long-tailed weasels; declines in the West and increased suitability in the East. Climate and land use were important predictors of the environmental niche for all species. Changes in habitat amount and distribution reflected widespread land use changes over the past century while declines in southern and low-elevation areas are consistent with impacts from climatic change. Conclusions Our models uncovered land use and climatic change as potential historic drivers of population change for North American weasels and provide a basis for management recommendations and targeted survey efforts. We identified potentially at-risk populations and a need for landscape-level planning to support weasel populations amid ongoing environmental changes.

Luna-Aranguré, C., and E. Vázquez-Domínguez. 2024. Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae. Diversity 16: 223.

Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change.

Rojas‐Soto, O., J. S. Forero‐Rodríguez, A. Galindo‐Cruz, C. Mota‐Vargas, K. D. Parra‐Henao, A. Peña‐Peniche, J. Piña‐Torres, et al. 2024. Calibration areas in ecological niche and species distribution modelling: Unravelling approaches and concepts. Journal of Biogeography.

AbstractAimThe calibration area (CA) corresponds to the geographic region used by different algorithms that estimate the species' environmental preferences and delimit its geographic distribution. This study intended to identify, test and compare current literature's most commonly employed approaches and methods for CA creation, highlighting the differences with the accessible area (M), a frequently misapplied concept.LocationGlobal.TaxonArthropods, amphibians, reptiles, birds and mammals.MethodsWe conducted a literature review and analysed 129 recent articles on species distribution that use correlative models to identify the methods used to establish the CA and their frequency. We also evaluated seven of the most widely used methods for 31 species from different taxa.ResultsWe found that the most frequently used methods in literature corresponded to biogeographic entities (BE). Moreover, according to our evaluation, those methods that seek to establish the CA through the accessible area approach (including BE and ‘grinnell’) were the best evaluated. Finally, we highlight the advantages and disadvantages of the analysed methods in selecting CA.Main ConclusionsAlthough we cannot fail to recognize the usefulness and validity of the different methods to establish CAs, we suggest calibrating ecological niche and species distribution models in light of explicit a priori hypotheses regarding the extent of accessible areas (M) as a delimitation of the CA, which theoretically includes the species' dispersal ability and its barriers. We recommend using the BE method, which is simple to establish and highly operational.

Mamba, H. S., and T. O. Randhir. 2024. Exploring temperature and precipitation changes under future climate change scenarios for black and white rhinoceros populations in Southern Africa. Biodiversity 25: 52–64.

Climate change is a potential human-induced threat to rhino populations and their habitat. Information on the effects of climate change on rhinoceros species can help manage and develop conservation plans to adapt to these changes. In this study, two climate change scenarios were used to predict temperature and precipitation changes in national parks in southern Africa and the effect those changes would have on black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations. The study used the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) 4.5 and 8.5, atmospheric CO2 concentrations of 650 and 1370 ppm, for the years 2055 and 2085 to explore the temperature and precipitation changes. All spatial information was processed using Geographic Information Systems and statistical analysis. Results show the changing climate will have significant negative impacts on the probability of occurrence of both species. Temperature changes will affect these probabilities more than precipitation changes. All study parks will have zero probability of occurrence for the species throughout their ranges should conditions reach those represented by the RCP 8.5 scenario late in the century. Conservation activities for the rhinoceros should take into consideration the potential for temperature and precipitation changes modelled in this study.

McBride, E., I. C. Winder, and W. Wüster. 2023. What Bit the Ancient Egyptians? Niche Modelling to Identify the Snakes Described in the Brooklyn Medical Papyrus. Environmental Archaeology: 1–14.

The Brooklyn Papyrus is a medical treatise from Ancient Egypt (∼660–330 BCE) focusing on snakebite. Herpetologists have proposed identifications for many of the animals it describes, but some remain uncertain partly because the species no longer live in Egypt. This paper uses niche modelling to predict the palaeodistributions of ten of these snake species, to test some proposed identifications. Occurrence records and environmental variables were used to generate maximum entropy models for each species in the present day and the mid-Holocene (∼4,000 BCE). Our models performed very well, generating AUC scores ≥0.867 and successfully predicting species’ current ranges. Nine species’ predicted palaeodistributions included areas within Ancient Egypt, and four (Bitis arietans, Dolichophis jugularis, Macrovipera lebetina and Daboia mauritanica) were within modern Egypt. Daboia palaestinae was also predicted to occupy a patch of suitable habitat inside modern Egypt, but separate from the species’ core range. The tenth species, Causus rhombeatus, would have been present in kingdoms that were the Ancient Egyptians’ regular trading partners. We therefore conclude that all ten species modelled in this study could have bitten Ancient Egyptian people. Our study demonstrates the usefulness of niche modelling in informing debates about the species ancient cultures may have interacted with.

Groh, S. S., P. Upchurch, J. J. Day, and P. M. Barrett. 2023. The biogeographic history of neosuchian crocodiles and the impact of saltwater tolerance variability. Royal Society Open Science 10.

Extant neosuchian crocodiles are represented by only 24 taxa that are confined to the tropics and subtropics. However, at other intervals during their 200 Myr evolutionary history the clade reached considerably higher levels of species-richness, matched by more widespread distributions. Neosuchians have occupied numerous habitats and niches, ranging from dwarf riverine forms to large marine predators. Despite numerous previous studies, several unsolved questions remain with respect to their biogeographic history, including the geographical origins of major groups, e.g. Eusuchia and Neosuchia itself. We carried out the most comprehensive biogeographic analysis of Neosuchia to date, based on a multivariate K-means clustering approach followed by the application of two ancestral area estimation methods (BioGeoBEARS and Bayesian ancestral location estimation) applied to two recently published phylogenies. Our results place the origin of Neosuchia in northwestern Pangaea, with subsequent radiations into Gondwana. Eusuchia probably emerged in the European archipelago during the Late Jurassic/Early Cretaceous, followed by dispersals to the North American and Asian landmasses. We show that putative transoceanic dispersal events are statistically significantly less likely to happen in alligatoroids. This finding is consistent with the saltwater intolerant physiology of extant alligatoroids, bolstering inferences of such intolerance in their ancestral lineages.

Leão, C. F., M. S. Lima Ribeiro, K. Moraes, G. S. R. Gonçalves, and M. G. M. Lima. 2023. Climate change and carnivores: shifts in the distribution and effectiveness of protected areas in the Amazon. PeerJ 11: e15887.

Background Carnivore mammals are animals vulnerable to human interference, such as climate change and deforestation. Their distribution and persistence are affected by such impacts, mainly in tropical regions such as the Amazon. Due to the importance of carnivores in the maintenance and functioning of the ecosystem, they are extremely important animals for conservation. We evaluated the impact of climate change on the geographic distribution of carnivores in the Amazon using Species Distribution Models (SDMs). Do we seek to answer the following questions: (1) What is the effect of climate change on the distribution of carnivores in the Amazon? (2) Will carnivore species lose or gain representation within the Protected Areas (PAs) of the Amazon in the future? Methods We evaluated the distribution area of 16 species of carnivores mammals in the Amazon, based on two future climate scenarios (RCP 4.5 and RCP 8.5) for the year 2070. For the construction of the SDMs we used bioclimatic and vegetation cover variables (land type). Based on these models, we calculated the area loss and climate suitability of the species, as well as the effectiveness of the protected areas inserted in the Amazon. We estimated the effectiveness of PAs on the individual persistence of carnivores in the future, for this, we used the SDMs to perform the gap analysis. Finally, we analyze the effectiveness of PAs in protecting taxonomic richness in future scenarios. Results The SDMs showed satisfactory predictive performance, with Jaccard values above 0.85 and AUC above 0.91 for all species. In the present and for the future climate scenarios, we observe a reduction of potencial distribution in both future scenarios (RCP4.5 and RCP8.5), where five species will be negatively affected by climate change in the RCP 4.5 future scenario and eight in the RCP 8.5 scenario. The remaining species stay stable in terms of total area. All species in the study showed a loss of climatic suitability. Some species lost almost all climatic suitability in the RCP 8.5 scenario. According to the GAP analysis, all species are protected within the PAs both in the current scenario and in both future climate scenarios. From the null models, we found that in all climate scenarios, the PAs are not efficient in protecting species richness.

Higino, G. T., F. Banville, G. Dansereau, N. R. Forero Muñoz, F. Windsor, and T. Poisot. 2023. Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web. PeerJ 11: e14620.

Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate.

Kagnew, B., A. Assefa, and A. Degu. 2022. Modeling the Impact of Climate Change on Sustainable Production of Two Legumes Important Economically and for Food Security: Mungbeans and Cowpeas in Ethiopia. Sustainability 15: 600.

Climate change is one of the most serious threats to global crops production at present and it will continue to be the largest threat in the future worldwide. Knowing how climate change affects crop productivity might help sustainability and crop improvement efforts. Under existing and projected climate change scenarios (2050s and 2070s in Ethiopia), the effect of global warming on the distribution of V. radiata and V. unguiculata was investigated. MaxEnt models were used to predict the current and future distribution pattern changes of these crops in Ethiopia using different climate change scenarios (i.e., lowest (RCP 2.6), moderate (RCP 4.5), and extreme (RCP 8.5)) for the years 2050s and 2070s. The study includes 81 and 68 occurrence points for V. radiata and V. unguiculata, respectively, along with 22 environmental variables. The suitability maps indicate that the Beneshangul Gumuz, Oromia, Amhara, SNNPR, and Tigray regions are the major Ethiopian regions with the potential to produce V. radiata, while Amhara, Gambella, Oromia, SNNPR, and Tigray are suitable for producing V. unguiculata. The model prediction for V. radiata habitat ranges distribution in Ethiopia indicated that 1.69%, 4.27%, 11.25% and 82.79% are estimated to be highly suitable, moderately suitable, less suitable, and unsuitable, respectively. On the other hand, the distribution of V. unguiculata is predicted to have 1.27%, 3.07%, 5.22%, and 90.44% habitat ranges that are highly suitable, moderately suitable, less suitable, and unsuitable, respectively, under the current climate change scenario by the year (2050s and 2070s) in Ethiopia. Among the environmental variables, precipitation of the wettest quarter (Bio16), solar radiation index (SRI), temperature seasonality (Bio4), and precipitation seasonality (Bio15) are discovered to be the most effective factors for defining habitat suitability for V. radiata, while precipitation of the wettest quarter (Bio16), temperature annual range (Bio7) and precipitation of the driest quarter (Bio17) found to be better habitat suitability indicator for V. unguiculata in Ethiopia. The result indicates that these variables were more relevant in predicting suitable habitat for these crops in Ethiopia. A future projection predicts that the suitable distribution region will become increasingly fragmented. In general, the study provides a scientific basis of suitable agro-ecological habitat for V. radiata and V. unguiculata for long-term crop management and production improvement in Ethiopia. Therefore, projections of current and future climate change impacts on such crops are vital to reduce the risk of crop failure and to identify the potential productive areas in the country.

Moreno, I., J. M. W. Gippet, L. Fumagalli, and P. J. Stephenson. 2022. Factors affecting the availability of data on East African wildlife: the monitoring needs of conservationists are not being met. Biodiversity and Conservation.

Understanding the status and abundance of species is essential for effective conservation decision-making. However, the availability of species data varies across space, taxonomic groups and data types. A case study was therefore conducted in a high biodiversity region—East Africa—to evaluate data biases, the factors influencing data availability, and the consequences for conservation. In each of the eleven target countries, priority animal species were identified as threatened species that are protected by national governments, international conventions or conservation NGOs. We assessed data gaps and biases in the IUCN Red List of Threatened Species, the Global Biodiversity Information Facility and the Living Planet Index. A survey of practitioners and decision makers was conducted to confirm and assess consequences of these biases on biodiversity conservation efforts. Our results showed data on species occurrence and population trends were available for a significantly higher proportion of vertebrates than invertebrates. We observed a geographical bias, with higher tourism income countries having more priority species and more species with data than lower tourism income countries. Conservationists surveyed felt that, of the 40 types of data investigated, those data that are most important to conservation projects are the most difficult to access. The main challenges to data accessibility are excessive expense, technological challenges, and a lack of resources to process and analyse data. With this information, practitioners and decision makers can prioritise how and where to fill gaps to improve data availability and use, and ensure biodiversity monitoring is improved and conservation impacts enhanced.