Wissenschaft ermöglicht durch Exemplardaten

Couvreur, T. L. P., X. Cornejo, J. N. Zapata, and A. Loor. 2022. Two new magnoliid (Annonaceae, Lauraceae) tree species from Manabí, western Ecuador. Blumea - Biodiversity, Evolution and Biogeography of Plants. https://doi.org/10.3767/blumea.2022.67.02.02

Western Ecuador harbours high plant diversity and endemism. The region of Manabí has known intense deforestation over the last decades, but lowland rain forests persist in a network of small forest fragment patches. Here, we describe two new magnoliid tree species from a small privately owned forest fragment known as La Esperanza reserve, in the El Carmen canton (Manabí): Aniba ecuadorica (Lauraceae) and Guatteria esperanzae (Annonaceae). For both species a detailed morphological description, a preliminary conservation status following IUCN criteria, distribution maps and high quality photographs are provided. This represents the second species of Aniba known to occur in western Ecuador, while there are 14 species of Guatteria documented for Ecuador west of the Andes. Aniba ecuadorica is only known from two localities and has a preliminary IUCN conservation status of Critically Endangered, while Guatteria esperanzae is known from six localities and is suggested to be Endangered. Finally, we provide a quick overview of Guatteria species in western Ecuador with a key to the species in the region. The description of these two new tree species underlines the important need of prospection and conservation of the remnant forests in the Manabí region of western Ecuador. We also stress the importance of privately owned forest fragments for biodiversity conservation.

Pang, S. E. H., Y. Zeng, J. D. T. Alban, and E. L. Webb. 2022. Occurrence–habitat mismatching and niche truncation when modelling distributions affected by anthropogenic range contractions B. Leroy [ed.],. Diversity and Distributions 28: 1327–1343. https://doi.org/10.1111/ddi.13544

Aims Human-induced pressures such as deforestation cause anthropogenic range contractions (ARCs). Such contractions present dynamic distributions that may engender data misrepresentations within species distribution models. The temporal bias of occurrence data—where occurrences represent distributions before (past bias) or after (recent bias) ARCs—underpins these data misrepresentations. Occurrence–habitat mismatching results when occurrences sampled before contractions are modelled with contemporary anthropogenic variables; niche truncation results when occurrences sampled after contractions are modelled without anthropogenic variables. Our understanding of their independent and interactive effects on model performance remains incomplete but is vital for developing good modelling protocols. Through a virtual ecologist approach, we demonstrate how these data misrepresentations manifest and investigate their effects on model performance. Location Virtual Southeast Asia. Methods Using 100 virtual species, we simulated ARCs with 100-year land-use data and generated temporally biased (past and recent) occurrence datasets. We modelled datasets with and without a contemporary land-use variable (conventional modelling protocols) and with a temporally dynamic land-use variable. We evaluated each model's ability to predict historical and contemporary distributions. Results Greater ARC resulted in greater occurrence–habitat mismatching for datasets with past bias and greater niche truncation for datasets with recent bias. Occurrence–habitat mismatching prevented models with the contemporary land-use variable from predicting anthropogenic-related absences, causing overpredictions of contemporary distributions. Although niche truncation caused underpredictions of historical distributions (environmentally suitable habitats), incorporating the contemporary land-use variable resolved these underpredictions, even when mismatching occurred. Models with the temporally dynamic land-use variable consistently outperformed models without. Main conclusions We showed how these data misrepresentations can degrade model performance, undermining their use for empirical research and conservation science. Given the ubiquity of ARCs, these data misrepresentations are likely inherent to most datasets. Therefore, we present a three-step strategy for handling data misrepresentations: maximize the temporal range of anthropogenic predictors, exclude mismatched occurrences and test for residual data misrepresentations.

Williams, C. J. R., D. J. Lunt, U. Salzmann, T. Reichgelt, G. N. Inglis, D. R. Greenwood, W. Chan, et al. 2022. African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004419

The early Eocene (∼56‐48 million years ago) is characterised by high CO2 estimates (1200‐2500 ppmv) and elevated global temperatures (∼10 to 16°C higher than modern). However, the response of the hydrological cycle during the early Eocene is poorly constrained, especially in regions with sparse data coverage (e.g. Africa). Here we present a study of African hydroclimate during the early Eocene, as simulated by an ensemble of state‐of‐the‐art climate models in the Deep‐time Model Intercomparison Project (DeepMIP). A comparison between the DeepMIP pre‐industrial simulations and modern observations suggests that model biases are model‐ and geographically dependent, however these biases are reduced in the model ensemble mean. A comparison between the Eocene simulations and the pre‐industrial suggests that there is no obvious wetting or drying trend as the CO2 increases. The results suggest that changes to the land sea mask (relative to modern) in the models may be responsible for the simulated increases in precipitation to the north of Eocene Africa. There is an increase in precipitation over equatorial and West Africa and associated drying over northern Africa as CO2 rises. There are also important dynamical changes, with evidence that anticyclonic low‐level circulation is replaced by increased south‐westerly flow at high CO2 levels. Lastly, a model‐data comparison using newly‐compiled quantitative climate estimates from palaeobotanical proxy data suggests a marginally better fit with the reconstructions at lower levels of CO2.

Reichgelt, T., D. R. Greenwood, S. Steinig, J. G. Conran, D. K. Hutchinson, D. J. Lunt, L. J. Scriven, and J. Zhu. 2022. Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology 37. https://doi.org/10.1029/2022pa004418

During the early to middle Eocene, a mid‐to‐high latitudinal position and enhanced hydrological cycle in Australia would have contributed to a wetter and “greener” Australian continent where today arid to semi‐arid climates dominate. Here, we revisit 12 southern Australian plant megafossil sites from the early to middle Eocene to generate temperature, precipitation and seasonality paleoclimate estimates, net primary productivity (NPP) and vegetation type, based on paleobotanical proxies and compare to early Eocene global climate models. Temperature reconstructions are uniformly subtropical (mean annual, summer, and winter mean temperatures 19–21 °C, 25–27 °C and 14–16 °C, respectively), indicating that southern Australia was ∼5 °C warmer than today, despite a >20° poleward shift from its modern geographic location. Precipitation was less homogeneous than temperature, with mean annual precipitation of ∼60 cm over inland sites and >100 cm over coastal sites. Precipitation may have been seasonal with the driest month receiving 2–7× less than mean monthly precipitation. Proxy‐model comparison is favorable with an 1680 ppm CO2 concentration. However, individual proxy reconstructions can disagree with models as well as with each other. In particular, seasonality reconstructions have systemic offsets. NPP estimates were higher than modern, implying a more homogenously “green” southern Australia in the early to middle Eocene, when this part of Australia was at 48–64 °S, and larger carbon fluxes to and from the Australian biosphere. The most similar modern vegetation type is modern‐day eastern Australian subtropical forest, although distance from coast and latitude may have led to vegetation heterogeneity.

Sluiter, I. R. K., G. R. Holdgate, T. Reichgelt, D. R. Greenwood, A. P. Kershaw, and N. L. Schultz. 2022. A new perspective on Late Eocene and Oligocene vegetation and paleoclimates of South-eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 596: 110985. https://doi.org/10.1016/j.palaeo.2022.110985

We present a composite terrestrial pollen record of latest Eocene through Oligocene (35.5–23 Ma) vegetation and climate change from the Gippsland Basin of south-eastern Australia. Climates were overwhelmingly mesothermic through this time period, with mean annual temperature (MAT) varying between 13 and 18 °C, with an average of 16 °C. We provide evidence to support a cooling trend through the Eocene–Oligocene Transition (EOT), but also identify three subsequent warming cycles through the Oligocene, leading to more seasonal climates at the termination of the Epoch. One of the warming episodes in the Early Oligocene appears to have also occurred at two other southern hemisphere sites at the Drake Passage as well as off eastern Tasmania, based on recent research. Similarities with sea surface temperature records from modern high southern latitudes which also record similar cycles of warming and cooling, are presented and discussed. Annual precipitation varied between 1200 and 1700 mm/yr, with an average of 1470 mm/yr through the sequence. Notwithstanding the extinction of Nothofagus sg. Brassospora from Australia and some now microthermic humid restricted Podocarpaceae conifer taxa, the rainforest vegetation of lowland south-eastern Australia is reconstructed to have been similar to present day Australian Evergreen Notophyll Vine Forests existing under the sub-tropical Köppen-Geiger climate class Cfa (humid subtropical) for most of the sequence. Short periods of cooler climates, such as occurred through the EOT when MAT was ~ 13 °C, may have supported vegetation similar to modern day Evergreen Microphyll Fern Forest. Of potentially greater significance, however, was a warm period in the Early to early Late Oligocene (32–26 Ma) when MAT was 17–18 °C, accompanied by small but important increases in Araucariaceae pollen. At this time, Araucarian Notophyll/Microphyll Vine Forest likely occurred regionally.

Freitas, C., F. T. Brum, C. Cássia-Silva, L. Maracahipes, M. B. Carlucci, R. G. Collevatti, and C. D. Bacon. 2021. Incongruent Spatial Distribution of Taxonomic, Phylogenetic, and Functional Diversity in Neotropical Cocosoid Palms. Frontiers in Forests and Global Change 4. https://doi.org/10.3389/ffgc.2021.739468

Biodiversity can be quantified by taxonomic, phylogenetic, and functional diversity. Current evidence points to a lack of congruence between the spatial distribution of these facets due to evolutionary and ecological constraints. A lack of congruence is especially evident between phylogenetic and ta…

Xue, T., S. R. Gadagkar, T. P. Albright, X. Yang, J. Li, C. Xia, J. Wu, and S. Yu. 2021. Prioritizing conservation of biodiversity in an alpine region: Distribution pattern and conservation status of seed plants in the Qinghai-Tibetan Plateau. Global Ecology and Conservation 32: e01885. https://doi.org/10.1016/j.gecco.2021.e01885

The Qinghai-Tibetan Plateau (QTP) harbors abundant and diverse plant life owing to its high habitat heterogeneity. However, the distribution pattern of biodiversity hotspots and their conservation status remain unclear. Based on 148,283 high-resolution occurrence coordinates of 13,450 seed plants, w…

Whitman, M., R. S. Beaman, R. Repin, K. Kitayama, S. Aiba, and S. E. Russo. 2021. Edaphic specialization and vegetation zones define elevational range‐sizes for Mt Kinabalu regional flora. Ecography 44: 1698–1709. https://doi.org/10.1111/ecog.05873

Identifying physical and ecological boundaries that limit where species can occur is important for predicting how those species will respond to global change. The island of Borneo encompasses a wide range of habitats that support some of the highest richness on Earth, making it an ideal location for…

Roalson, E. H., and W. R. Roberts. 2016. Distinct Processes Drive Diversification in Different Clades of Gesneriaceae. Systematic Biology 65: 662–684. https://doi.org/10.1093/sysbio/syw012

Using a time-calibrated phylogenetic hypothesis including 768 Gesneriaceae species (out of ~~ 3300 species) and more than 29,000 aligned bases from 26 gene regions, we test Gesneriaceae for diversification rate shifts and the possible proximal drivers of these shifts: geographic distributions, growt…

Joyce, E., K. Thiele, F. Slik, and D. Crayn. 2020. Checklist of the vascular flora of the Sunda-Sahul Convergence Zone. Biodiversity Data Journal 8. https://doi.org/10.3897/bdj.8.e51094

Background The Sunda-Sahul Convergence Zone, defined here as the area comprising Australia, New Guinea, and Southeast Asia (Indonesia to Myanmar), straddles the Sunda and Sahul continental shelves and is one of the most biogeographically famous and important regions in the world. Floristically, it i…