Wissenschaft ermöglicht durch Exemplardaten

López‐Aguilar, T. P., J. Montalva, B. Vilela, M. P. Arbetman, M. A. Aizen, C. L. Morales, and D. de P. Silva. 2024. Niche analyses and the potential distribution of four invasive bumblebees worldwide. Ecology and Evolution 14. https://doi.org/10.1002/ece3.11200

The introduction of bees for agricultural production in distinct parts of the world and poor management have led to invasion processes that affect biodiversity, significantly impacting native species. Different Bombus species with invasive potential have been recorded spreading in different regions worldwide, generating ecological and economic losses. We applied environmental niche and potential distribution analyses to four species of the genus Bombus to evaluate the similarities and differences between their native and invaded ranges. We found that B. impatiens has an extended environmental niche, going from dry environmental conditions in the native range to warmer and wetter conditions in the invaded range. Bombus ruderatus also exhibited an extended environmental niche with drier and warmer conditions in the invaded range than in its native range. Bombus subterraneus expanded its environmental niche from cooler and wetter conditions in the native range to drier and warmer conditions in the invaded range. Finally, B. terrestris showed the most significant variation in the environmental niche, extending to areas with similar and different environmental conditions from its native range. The distribution models agreed with the known distributions for the four Bombus species, presenting geographic areas known to be occupied by each species in different regions worldwide. The niche analysis indicate shifts in the niches from the native to the invaded distribution area of the bee species. Still, niche similarities were observed in the areas of greatest suitability in the potential distribution for B. ruderatus, B. subterraneus, and B. terrestris, and to a lesser degree in the same areas with B. impatiens. These species require similar environmental conditions as in their native ranges to be established in their introduced ranges. Still, they can adapt to changes in temperature and humidity, allowing them to expand their ranges into new climatic conditions.

Li, D., X. Wang, K. Jiang, R. An, Y. Li, and D. Liu. 2024. The impact of climate change and the conservation of the keystone Asian honeybee using niche models and systematic prioritization C. Bahlai [ed.],. Journal of Economic Entomology. https://doi.org/10.1093/jee/toae018

Global warming has seriously disturbed the Earth’s ecosystems, and in this context, Asian honeybee (Apis cerana) has experienced a dramatic decline in recent decades. Here, we examined both direct and indirect effects of climate change on A. cerana through ecological niche modeling of A. cerana, and its disease pathogens (i.e., Chinese sacbrood virus and Melissococcus plutonius) and enemies (i.e., Galleria mellonella and Vespa mandarinia). Ecological niche modeling predicts that climate change will increase the potential suitability of A. cerana, but it will also cause some of the original habitat areas to become unsuitable. Outbreak risks of Chinese sacbrood disease and European Foulbrood will increase dramatically, while those of G. mellonella and V. mandarinia will decrease only slightly. Thus, climate change will produce an unfavorable situation for even maintaining some A. cerana populations in China in the future. Genetic structure analyses showed that the A. cerana population from Hainan Island had significant genetic differentiation from that of the mainland, and there was almost no gene flow between the 2, suggesting that urgent measures are needed to protect the unique genetic resources there. Through taking an integrated planning technique with the Marxan approach, we optimized conservation planning, and identified potential nature reserves (mainly in western Sichuan and southern Tibet) for conservation of A. cerana populations. Our results can provide insights into the potential impact of climate change on A. cerana, and will help to promote the conservation of the keystone honeybee in China and the long-term sustainability of its ecosystem services.

Boxler, B. M., C. S. Loftin, and W. B. Sutton. 2024. Monarch Butterfly (Danaus plexippus) Roost Site-Selection Criteria and Locations East of the Appalachian Mountains, U.S.A. Journal of Insect Behavior. https://doi.org/10.1007/s10905-023-09844-5

The monarch butterfly is a flagship species and pollinator whose populations have declined by 85% in the recent two decades. Their largest population overwinters in Mexico, then disperses across eastern North America during March to August. During September-December, they return south using two flyways, one that spans the central United States and another that follows the Atlantic coast. Migrating monarchs fly diurnally and roost in groups nocturnally. We sought to determine the criteria this species uses to select roost sites, and the landscape context where those sites are found. We developed species distribution models of the landscape context of Atlantic flyway roost sites via citizen scientist observations and environmental variables that affect monarchs in the adult stage prior to migration, using two algorithms (Maximum Entropy and Genetic Algorithm for Ruleset Prediction). We developed two model validation methods: a citizen scientist smartphone application and peer-informed comparisons with aerial imagery. Proximity to surface water, elevation, and vegetative cover were the most important criteria for monarch roost site selection. Our model predicted 2.6 million ha (2.9% of the study area) of suitable roosting habitat in the Atlantic flyway, with the greatest availability along the Atlantic coastal plain and Appalachian Mountain ridges. Conservation of this species is difficult, as monarchs range over both large areas and various habitat types, and most current monarch research and conservation efforts are focused on the breeding and overwintering periods. These models can serve to help prioritize surveys of roosting sites and conservation efforts during the monarchs’ fall migration.

Feuerborn, C., G. Quinlan, R. Shippee, T. L. Strausser, T. Terranova, C. M. Grozinger, and H. M. Hines. 2023. Variance in heat tolerance in bumble bees correlates with species geographic range and is associated with several environmental and biological factors. Ecology and Evolution 13. https://doi.org/10.1002/ece3.10730

Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance in Bombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change.

Kebaïli, C., S. Sherpa, M. Guéguen, J. Renaud, D. Rioux, and L. Després. 2023. Comparative genetic and demographic responses to climate change in three peatland butterflies in the Jura massif. Biological Conservation 287: 110332. https://doi.org/10.1016/j.biocon.2023.110332

Climate is a main driver of species distributions, but all species are not equally affected by climate change, and their differential responses to similar climatic constraints might dramatically affect the local species composition. In the context of climate warming, a better knowledge of the ability of dispersal-limited and habitat-specialist species to track climate change at local scale is urgently needed. Comparing the population genetic and demographic impacts of past climate cycles in multiple co-distributed species with similar ecological requirements help predicting the community-scale response to climate warming, but such comparative studies remain rare. Here, we studied the relationship between demographic history and past changes in spatial distribution of three protected peatland butterfly species (Boloria aquilonaris, Coenonympha tullia, Lycaena helle) in the Jura massif (France), using a genomic approach (ddRAD sequencing) and species distribution modeling (SDM). We found a similar and narrow thermal niche among species, and shared demographic histories of post-glacial decline and recent fragmentation of populations. Each species functions as a single metapopulation at the regional scale, with a North-South gradient of decreasing genetic diversity that fits the local dynamics of the ice cover over time. However, we found no correlation between changes in the quantity or the quality of suitable areas and changes in effective population size over time. This suggests that species ranges moved beyond the Jura massif during the less favorable climatic periods, and/or that habitat loss and deterioration are major drivers of the current dramatic decline observed in the three species. Our findings allow better understanding how history events and contemporary dynamics shape local biodiversity, providing valuable knowledge to identify appropriate conservation strategies.

Sánchez‐Campaña, C., C. Múrria, V. Hermoso, D. Sánchez‐Fernández, J. M. Tierno de Figueroa, M. González, A. Millán, et al. 2023. Anticipating where are unknown aquatic insects in Europe to improve biodiversity conservation. Diversity and Distributions. https://doi.org/10.1111/ddi.13714

Aim Understanding biodiversity patterns is crucial for prioritizing future conservation efforts and reducing the current rates of biodiversity loss. However, a large proportion of species remain undescribed (i.e. unknown biodiversity), hindering our ability to conduct this task. This phenomenon, known as the ‘Linnean shortfall’, is especially relevant in highly diverse, yet endangered, taxonomic groups, such as insects. Here we explore the distributions of recently described freshwater insect species in Europe to (1) infer the potential location of unknown biodiversity hotspots and (2) determine the variables that can anticipate the distribution of unknown biodiversity. Location The European continent, including western Russia, Cyprus and Turkey. Methods Georeferenced information of all sites where new aquatic insect species were described across Europe from 2000 to 2020 was compiled. In order to understand the observed spatial patterns in richness of recently described species, spatial units were defined (level 6 of HydroBASINS) and associated with a combination of a set of socioeconomic, environmental and sampling effort descriptors. A zero-inflated Poisson regression approach was used to model the richness of newly described species within each spatial unit. Results Nine hundred and sixty-six recently described species were found: 398 Diptera, 362 Trichoptera, 105 Coleoptera, 66 Plecoptera, 28 Ephemeroptera, 3 Neuroptera, 2 Lepidoptera and 2 Odonata. The Mediterranean Basin was the region with the highest number of recently described species (74%). The richness of recently described species per spatial unit across Europe was highest at mid-elevation areas (between 400 and 1000 m), latitudes between 40 and 50° and in areas with yearly average precipitation levels of 500–1000 mm, a medium intensity of sampling effort and low population density. The percentage of protected areas in each study unit was not significantly related to the richness of recently described species. In fact, 70% of the species were found outside protected areas. Main conclusions The results highlight the urgent need to concentrate conservation efforts in freshwater ecosystems located at mid-altitude areas and out of protected areas across the Mediterranean Basin. The highest number of newly described species in those areas indicates that further monitoring efforts are required to ensure the aquatic biodiversity is adequately known and managed within a context of growing human impacts in freshwater ecosystems.

Huber, B. A., G. Meng, J. Král, I. M. Ávila Herrera, M. A. Izquierdo, and L. S. Carvalho. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society. https://doi.org/10.1093/zoolinnean/zlac100

Abstract Ninetinae are a group of poorly known spiders that do not fit the image of ‘daddy long-legs spiders’ (Pholcidae), the family to which they belong. They are mostly short-legged, tiny and live in arid environments. The previously monotypic Andean genus Nerudia exemplifies our poor knowledge of Ninetinae: only seven adult specimens from two localities in Chile and Argentina have been reported in the literature. We found representatives of Nerudia at 24 of 52 localities visited in 2019, mostly under rocks in arid habitats, up to 4450 m a.s.l., the highest known record for Pholcidae. With now more than 400 adult specimens, we revise the genus, describing ten new species based on morphology (including SEM) and COI barcodes. We present the first karyotype data for Nerudia and for its putative sister-genus Gertschiola. These two southern South American genera share a X1X2X3Y sex chromosome system. We model the distribution of Nerudia, showing that the genus is expected to occur in the Atacama biogeographic province (no record so far) and that its environmental niche is phylogenetically conserved. This is the first comprehensive revision of any Ninetinae genus. It suggests that focused collecting may uncover a considerable diversity of these enigmatic spiders.

Hausdorf, B. 2023. Distribution patterns of established alien land snail species in the Western Palaearctic Region. NeoBiota 81: 1–32. https://doi.org/10.3897/neobiota.81.96360

AbstractEstablished alien land snail species that were introduced into the Western Palaearctic Region from other regions and their spread in the Western Palaearctic are reviewed. Thirteen of the 22 species came from North America, three from Sub-Saharan Africa, two from the Australian region, three probably from the Oriental Region and one from South America. The establishment of outdoor populations of these species was usually first seen at the western or southern rims of the Western Palearctic. Within Europe, the alien species usually spread from south to north and from west to east. The latitudinal ranges of the alien species significantly increased with increasing time since the first record of introduction to the Western Palearctic. The latitudinal mid-points of the Western Palaearctic and native ranges of the species are significantly correlated when one outlier is omitted. There is a general trend of poleward shifts of the ranges of the species in the Western Palaearctic compared to their native ranges. There are three reasons for these shifts: (1) the northward expansion of some species in Western Europe facilitated by the oceanic climate, (2) the impediment to the colonisation of southern latitudes in the Western Palaearctic due to their aridity and (3) the establishment of tropical species in the Mediterranean and the Middle East. Most of the species are small, not carnivorous and unlikely to cause serious ecological or economic damage. In contrast, the recently introduced large veronicellid slugs from Sub-Saharan Africa and the giant African snail Lissachatinafulica could cause economic damage in irrigated agricultural areas or greenhouses in the Mediterranean and the Middle East.

Kolanowska, M., S. Nowak, and A. Rewicz. 2022. Will Greenland be the last refuge for the continental European small-white orchid?Niche modeling of future distribution of Pseudorchis albida. Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.912428

Climate change affects populations of plants, animals, and fungi not only by direct modifications of their climatic niches but also by altering their ecological interactions. In this study, the future distribution of suitable habitats for the small-white orchid (Pseudorchis albida) was predicted using ecological niche modeling. In addition, the effect of global warming on the spatial distribution and availability of the pollen vectors of this species was evaluated. Due to the inconsistency in the taxonomic concepts of Pseudorchis albida, the differences in the climatic preferences of three proposed subspecies were investigated. Due to the overlap of both morphological and ecological characters of ssp. albida and ssp. tricuspis, they are considered to be synonyms, and the final analyses were carried out using ssp. albida s.l. and ssp. straminea. All of the models predict that with global warming, the number of suitable niches for these orchids will increase. This significant increase in preferred habitats is expected to occur in Greenland, but habitat loss in continental Europe will be severe. Within continental Europe, Pseudorchis albida ssp. albida will lose 44%–98% of its suitable niches and P. albida ssp. straminea will lose 46%–91% of its currently available habitats. An opposite effect of global warming was predicted for pollinators of P. albida s.l., and almost all insects studied will be subject to habitat loss. Still, within the predicted potential geographical ranges of the orchid studied, some pollen vectors are expected to occur, and these can support the long-term survival of the small-white orchid.

Montañez-Reyna, M., J. L. León-Cortés, F. Infante, E. J. Naranjo, and A. Gómez-Velasco. 2022. Diversity and Climatic Distribution of Moths in the Tribe Arctiini (Lepidoptera: Erebidae: Arctiinae) in Mexico P. Shi [ed.],. Annals of the Entomological Society of America 115: 253–266. https://doi.org/10.1093/aesa/saac002

Abstract The Mexican lepidopteran fauna is particularly diverse, but many moth groups remain poorly documented. The tribe Arctiini is a species-rich group that has been used as a reliable indicator of environmental change. However, little is known about the fauna of the tribe Arctiini in Mexico, and there is no exhaustive review of its diversity and distribution patterns. Our aims were: 1) to account for the species diversity and distribution patterns of the tribe Arctiini; 2) to build spatial distributions and discuss possible changes in the distribution areas of the tribe Arctiini using conservative (RCP 2.6) and liberal (RCP 8.5) future climate scenarios; and 3) to discuss the conservation implications for key taxa that due to their life history characteristics and restricted distribution, might require particular conservation actions. We compiled a total of 16,385 records and 548 species in seven subtribes. Diversity profiles revealed higher cumulative species richness and diversity for the subtribes Phaegopterina, Ctenuchina, and Euchromiina, and we identified a pattern of decreasing species diversity with elevation. In addition, we estimated that 35% and 84% of modeled species in future conservative and liberal climatic scenarios, respectively, would result in significant losses of climatic suitability and shifts in spatial distribution. The endemic species, Virbia semirosea, Poliopastea jalapensis, and Pygoctenucha azteca would likely reduce their distribution by approximately 50% in both climatic scenarios. Maintaining a network of highly threatened habitats (e.g., cloud forests, tropical rain forests) will be essential to preserve persisting species populations and to increase likely (re)colonization events.