Wissenschaft ermöglicht durch Exemplardaten

Zanatta, F., R. Engler, F. Collart, O. Broennimann, R. G. Mateo, B. Papp, J. Muñoz, et al. 2020. Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications 11. https://doi.org/10.1038/s41467-020-19410-8

The extent to which species can balance out the loss of suitable habitats due to climate warming by shifting their ranges is an area of controversy. Here, we assess whether highly efficient wind-dispersed organisms like bryophytes can keep-up with projected shifts in their areas of suitable climate.…

Wierzcholska, S., M. K. Dyderski, and A. M. Jagodziński. 2020. Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Global and Planetary Change 193: 103270. https://doi.org/10.1016/j.gloplacha.2020.103270

Woodland-specialist epiphytic bryophytes are both a threatened ecological guild of forest species as well as a precise bioindicator of conservation value of forest ecosystems. However, due to lack of data on distribution, there is no information about their potential reaction to predicted climate ch…

Speed, J. D. M., G. Austrheim, M. Bendiksby, A. L. Kolstad, and K. E. M. Vuorinen. 2020. Increasing Cervidae populations have variable impacts on habitat suitability for threatened forest plant and lichen species. Forest Ecology and Management 473: 118286. https://doi.org/10.1016/j.foreco.2020.118286

Large herbivores play a key role in temperate and boreal forest ecosystems. Cervidae (deer) population densities and community structure have undergone drastic changes in many parts of the world over the past decades, often with deer populations increasing. Many studies show impacts of Cervidae on m…